Pregunta
Use properties of logarithms to find the exact value of the expression. Do not use a calculator. \[ \log _{16} 2+\log _{16} 8 \]
Ask by Mejia Tucker. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The exact value of the expression is \(1\).
Solución
To find the exact value of the expression \(\log_{16} 2 + \log_{16} 8\) using properties of logarithms, follow these steps:
1. **Use the Product Property of Logarithms**:
The product property states that \(\log_b (M) + \log_b (N) = \log_b (MN)\). Applying this property:
\[
\log_{16} 2 + \log_{16} 8 = \log_{16} (2 \times 8) = \log_{16} 16
\]
2. **Evaluate the Logarithm**:
Since \(16\) is the base of the logarithm, \(\log_{16} 16\) asks, "To what power must \(16\) be raised to get \(16\)?" The answer is \(1\):
\[
\log_{16} 16 = 1
\]
Therefore, the exact value of the expression is:
**Answer:** \(1\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the exact value of \(\log_{16} 2 + \log_{16} 8\), we can use the property of logarithms that states \(\log_b a + \log_b c = \log_b (a \cdot c)\). First, we combine the two logarithms: \[ \log_{16} 2 + \log_{16} 8 = \log_{16} (2 \cdot 8) = \log_{16} 16. \] Next, we can simplify \(\log_{16} 16\). Since \(16\) is the base of the logarithm, we know that: \[ \log_{16} 16 = 1. \] Thus, the exact value of the expression \(\log_{16} 2 + \log_{16} 8\) is \[ \boxed{1}. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium