Pregunta
upstudy study bank question image url

Construct a circle of radius 5 cm . Then construct a pair of tangents to the circle such that the angle between them is \( 60^{\circ} \)

Ask by Hills Dickson. in India
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To construct a circle with a radius of 5 cm and two tangent lines that form a \(60^\circ\) angle between them, follow these steps: 1. **Draw the Circle**: Use a compass to draw a circle with center \( O \) and a radius of 5 cm. 2. **Draw the First Tangent**: At any point \( A \) on the circle, draw a tangent line \( l_1 \) perpendicular to the radius \( OA \). 3. **Determine the Second Point**: From center \( O \), mark point \( B \) on the circle such that the angle \( AOB \) is \(120^\circ\). 4. **Draw the Second Tangent**: At point \( B \), draw a tangent line \( l_2 \) perpendicular to the radius \( OB \). 5. **Verify the Angle**: Ensure that the angle between \( l_1 \) and \( l_2 \) is \(60^\circ\). This construction results in two tangent lines to the circle that intersect at a \(60^\circ\) angle.

Solución

To construct a circle of radius 5 cm and then create a pair of tangent lines to the circle that form a \(60^\circ\) angle between them, follow these step-by-step instructions using a compass and straightedge: ### **Materials Needed** - Compass - Ruler or straightedge - Protractor (optional, but helpful for verifying angles) - Pencil - Paper ### **Step 1: Draw the Circle** 1. **Draw the Circle with Center \( O \)** - Set your compass to a radius of **5 cm**. - Draw a circle and label its center as point \( O \). ![Step 1](https://i.imgur.com/1VhO6hc.png) ### **Step 2: Choose the First Point of Tangency** 2. **Select Point \( A \) on the Circumference** - Choose any point on the circumference and label it as point \( A \). ![Step 2](https://i.imgur.com/mJmzuKr.png) ### **Step 3: Construct the First Tangent Line** 3. **Draw Tangent Line \( l_1 \) at Point \( A \)** - **Construct a Perpendicular to \( OA \) at \( A \):** - Using a compass, draw an arc above and below point \( A \) intersecting \( OA \). - Without changing the compass width, draw arcs from these intersection points to create a perpendicular line. - Draw the tangent line \( l_1 \) perpendicular to \( OA \) at \( A \). ![Step 3](https://i.imgur.com/E8EHLpc.png) ### **Step 4: Determine the Second Point of Tangency** 4. **Construct a \(120^\circ\) Angle at Center \( O \)** - Since the angle between the two tangent lines needs to be \(60^\circ\), the central angle between the two radii to the points of tangency will be \(120^\circ\) (because the tangent lines are each perpendicular to their respective radii). - **Using a Protractor:** - Place the protractor at point \( O \). - Measure a \(120^\circ\) angle from \( OA \) and mark this angle. - **Alternatively, Using Compass and Straightedge:** - Construct an equilateral triangle to achieve a \(60^\circ\) angle and then double it to get \(120^\circ\). ![Step 4](https://i.imgur.com/E4c2qq1.png) 5. **Mark Point \( B \) on the Circumference** - From point \( O \), mark point \( B \) on the circumference such that angle \( AOB = 120^\circ \). ![Step 5](https://i.imgur.com/qh7LzEC.png) ### **Step 5: Construct the Second Tangent Line** 6. **Draw Tangent Line \( l_2 \) at Point \( B \)** - **Construct a Perpendicular to \( OB \) at \( B \):** - Repeat the perpendicular construction process used for point \( A \) to find the direction of the tangent line at \( B \). - Draw the tangent line \( l_2 \) perpendicular to \( OB \) at \( B \). ![Step 6](https://i.imgur.com/bBm6LiG.png) ### **Step 6: Verify the Angle Between the Tangents** 7. **Check the \(60^\circ\) Angle Between \( l_1 \) and \( l_2 \)** - Using a protractor, measure the angle between tangent lines \( l_1 \) and \( l_2 \) to ensure it is \(60^\circ\). - This verification confirms the accuracy of your construction. ![Step 7](https://i.imgur.com/YpZBluW.png) ### **Final Result** You have successfully constructed a circle with a radius of 5 cm and two tangent lines that intersect at a \(60^\circ\) angle. ![Final Construction](https://i.imgur.com/u8dCjRS.png) ### **Summary of Steps** 1. Draw a circle with center \( O \) and radius 5 cm. 2. Select a point \( A \) on the circle and draw the tangent line \( l_1 \) at \( A \). 3. Construct a \(120^\circ\) angle at \( O \) to locate point \( B \) on the circumference. 4. Draw the tangent line \( l_2 \) at \( B \). 5. Verify that the angle between \( l_1 \) and \( l_2 \) is \(60^\circ\). By following these steps, you can accurately create two tangent lines to a circle that form a specific angle between them.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To start off, draw a circle with a radius of 5 cm using a compass. Next, mark the center of the circle as point O. To construct the pair of tangents, draw a line segment from O to a point T outside the circle. The length of OT can be found using the tangent formula involving the circle's radius and the desired angle. For an angle of \( 60^{\circ} \), you can use trigonometric principles to determine the right position for point T. Generate two lines from T that make a \( 60^{\circ} \) angle with each other and draw them towards the circle; these will be the tangents. For those curious about circles and tangents, did you know that the concept of a tangent goes way back to ancient mathematics? The ancient Greeks were among the first to explore the properties of circles and tangents, laying the groundwork for modern geometry. Fast forward to today, and we see tangents used not only in mathematics but also in physics and engineering, helping us design everything from roller coasters to the trajectories of spacecraft. So, whether you're a geometry whiz or just a curious mind, circles and tangents have got you covered!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad