Pregunta
upstudy study bank question image url

Given the velocity function \( v \) of an object moving along a line, explain how definite integrals can be used \( t 0 \) find the displacement of the object. Choose the correct answer below. A. The displacement between \( t=a \) and \( t=b,[a, b] \), is \( \int_{a}^{b} v(t) d t \). The displacement between \( t=a \) and \( t=b,[a, b] \), is \( \int_{a}^{b}|v(t)| d t \). C. The displacement between \( t=a \) and \( t=b,[a, b] \), is \( \int_{b}^{a} v(t) d t \). D. The displacement between \( t=a \) and \( t=b,[a, b] \), is \( \int_{b}^{a}|v(t)| d t \).

Ask by Fuentes Klein. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The displacement between \( t=a \) and \( t=b \) is \( \int_{a}^{b} v(t) \, dt \).

Solución

To determine the displacement of an object moving along a line using its velocity function \( v(t) \), we utilize definite integrals. The displacement over a time interval \([a, b]\) is given by the integral of the velocity function over that interval. Mathematically, this is expressed as: \[ \text{Displacement} = \int_{a}^{b} v(t) \, dt \] This integral calculates the net change in position from time \( t = a \) to \( t = b \). It's important to note that this gives the **displacement**, which is the overall change in position considering direction (i.e., it can be positive or negative). On the other hand, if you want to calculate the **total distance traveled** (regardless of direction), you would integrate the absolute value of the velocity function: \[ \text{Total Distance} = \int_{a}^{b} |v(t)| \, dt \] Given the options provided, **Option A** correctly states that the displacement is the integral of the velocity function over the interval \([a, b]\). However, it seems to have an incomplete or duplicated part in the statement. Ignoring the potential typographical error, **Option A** aligns with the correct mathematical interpretation for displacement. **Correct Answer:** **A. The displacement between \( t=a \) and \( t=b,[a, b] \), is \( \int_{a}^{b} v(t) d t \). The displacement between \( t=a \) and \( t=b,[a, b] \), is \( \int_{a}^{b}|v(t)| d t \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The displacement of an object moving along a line can be determined by evaluating the definite integral of its velocity function over a given interval. Specifically, the displacement between \( t=a \) and \( t=b \) is calculated as \( \int_{a}^{b} v(t) \, dt \). This integral sums up all the instantaneous velocities over the time interval, providing a net change in position. For clarity, remember that if the velocity function \( v(t) \) takes negative values during the interval, it indicates that the object is moving in the opposite direction. Therefore, while the integral \( \int_{a}^{b} v(t) \, dt \) gives you the net displacement, \( \int_{a}^{b} |v(t)| \, dt \) would provide the total distance traveled regardless of direction. So, the right answer here is \( A \), emphasizing the net change in position with consideration of the velocity's sign.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad