Pregunta
0. A cube has an edge length of 5 cm . How many times greater will the volume be for a different cub with double the edge lengths? (show your work)
Ask by Pope Mcdonald. in Canada
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The volume of the second cube is 8 times greater than the original cube.
Solución
To determine how many times greater the volume of the second cube is compared to the first cube, follow these steps:
1. **Understand the Volume Formula for a Cube:**
The volume \( V \) of a cube with edge length \( a \) is given by:
\[
V = a^3
\]
2. **Calculate the Volume of the Original Cube:**
- **Edge Length (\( a_1 \)):** 5 cm
- **Volume (\( V_1 \)):**
\[
V_1 = a_1^3 = 5^3 = 125 \text{ cm}^3
\]
3. **Determine the Edge Length of the Second Cube:**
The second cube has double the edge length of the first cube.
\[
a_2 = 2 \times a_1 = 2 \times 5 \text{ cm} = 10 \text{ cm}
\]
4. **Calculate the Volume of the Second Cube:**
- **Volume (\( V_2 \)):**
\[
V_2 = a_2^3 = 10^3 = 1000 \text{ cm}^3
\]
5. **Find How Many Times Greater the Second Volume Is:**
\[
\text{Ratio} = \frac{V_2}{V_1} = \frac{1000}{125} = 8
\]
**Conclusion:**
The volume of the second cube is **8 times greater** than the volume of the original cube.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the volume of a cube, you use the formula \( V = s^3 \), where \( s \) is the edge length. For the first cube with an edge length of 5 cm: \[ V_1 = 5^3 = 125 \text{ cm}^3 \] For the second cube with double the edge length (10 cm): \[ V_2 = 10^3 = 1000 \text{ cm}^3 \] Now, to find how many times greater the volume of the second cube is than the first cube: \[ \text{Times greater} = \frac{V_2}{V_1} = \frac{1000}{125} = 8 \] So, the volume of the second cube is 8 times greater than the first cube.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium