Pregunta
4. If the graph of \( y=-x^{2}+6 x-5 \) is reflected in the \( x \)-axis and the resulting graph is then reflected in the \( y \)-axis, the new equation is (A) \( y=-(x-3)^{2}+4 \) (B) \( y=-x^{2}-6 x-5 \) (C) \( y=(x+3)^{2}+4 \) (D) \( y=x^{2}+6 x+5 \)
Ask by Patel Campbell. in South Africa
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
After reflecting the graph of \( y = -x^2 + 6x - 5 \) first in the \( x \)-axis and then in the \( y \)-axis, the new equation is \( y = x^2 + 6x + 5 \).
Solución
To solve the problem, we'll perform the required reflections step by step on the given quadratic equation \( y = -x^2 + 6x - 5 \).
**Step 1: Reflect the graph in the \( x \)-axis.**
Reflecting a graph over the \( x \)-axis changes the sign of the \( y \)-values. This means we replace \( y \) with \( -y \):
\[
-y = -x^2 + 6x - 5 \\
\Rightarrow y = x^2 - 6x + 5
\]
**Step 2: Reflect the resulting graph in the \( y \)-axis.**
Reflecting a graph over the \( y \)-axis changes the sign of the \( x \)-values. This means we replace \( x \) with \( -x \) in the equation:
\[
y = (-x)^2 - 6(-x) + 5 \\
\Rightarrow y = x^2 + 6x + 5
\]
The final equation after both reflections is:
\[
y = x^2 + 6x + 5
\]
**Answer:** (D) \( y=x^{2}+6 x+5 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve this problem, we need to reflect the original equation \( y = -x^{2} + 6x - 5 \) in the \( x \)-axis, and then in the \( y \)-axis. 1. **Reflection in the \( x \)-axis**: This changes the sign of \( y \): \[ y = -(-x^{2} + 6x - 5) = x^{2} - 6x + 5. \] 2. **Reflection in the \( y \)-axis**: This replaces \( x \) with \( -x \): \[ y = -(-x)^{2} + 6(-x) - 5 = -x^{2} - 6x - 5. \] Thus, the new equation after these transformations is \( y = -x^{2} - 6x - 5 \). The correct answer is (B) \( y = -x^{2} - 6x - 5 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium