Pregunta
\( \left\{\begin{array}{l}n(a)=8 \\n(b)=12 \\n(anb)=3 \\find \\n(aub)using \\venndiagram\end{array}\right. \)
Ask by Hamilton Wilson. in Nigeria
Jan 20,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( n(A \cup B) = 17 \)
Solución
To find \( n(A \cup B) \) using a Venn diagram, we can use the principle of inclusion-exclusion. Here's a step-by-step explanation:
### Given:
- \( n(A) = 8 \) (Number of elements in set \( A \))
- \( n(B) = 12 \) (Number of elements in set \( B \))
- \( n(A \cap B) = 3 \) (Number of elements common to both sets \( A \) and \( B \))
### Objective:
Find \( n(A \cup B) \) (Number of elements in either set \( A \), set \( B \), or both)
### Formula:
The number of elements in the union of two sets is given by:
\[
n(A \cup B) = n(A) + n(B) - n(A \cap B)
\]
### Calculation:
Plugging in the given values:
\[
n(A \cup B) = 8 + 12 - 3 = 17
\]
### Visualization with a Venn Diagram:
Imagine two overlapping circles representing sets \( A \) and \( B \):
- **Set \( A \)** has 8 elements.
- **Set \( B \)** has 12 elements.
- The **overlapping region** (common to both sets) has 3 elements.
To find the total number of unique elements in either set:
1. **Add all elements from both sets**: \( 8 + 12 = 20 \)
2. **Subtract the overlapping elements** (since they've been counted twice): \( 20 - 3 = 17 \)
### Final Answer:
\[
n(A \cup B) = 17
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find \( n(a \cup b) \) using the provided values, we can use the formula for the union of two sets: \[ n(a \cup b) = n(a) + n(b) - n(a \cap b) \] Given: - \( n(a) = 8 \) - \( n(b) = 12 \) - \( n(a \cap b) = n(anb) = 3 \) Plugging in the numbers: \[ n(a \cup b) = 8 + 12 - 3 = 17 \] So, the number of elements in the union of sets \( a \) and \( b \) is 17.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium