Factor the following polynomial equation: \( f(x)=8 x^{3}-27 \) \( f(x)=(a x+b)\left(c x^{2}+d x+e\right) \), where \( a=\square \) \( b=\square \) \( c=\square \) \( d=\square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To factor the polynomial \( f(x) = 8x^3 - 27 \), we can recognize that it is a difference of cubes. We can write \( 8x^3 \) as \( (2x)^3 \) and \( 27 \) as \( 3^3 \). Thus, we have: \[ f(x) = (2x)^3 - 3^3 \] Using the difference of cubes formula, \( a^3 - b^3 = (a - b)(a^2 + ab + b^2) \), we identify \( a = 2x \) and \( b = 3 \). Applying the formula gives us: \[ f(x) = (2x - 3)((2x)^2 + (2x)(3) + 3^2) \] Now, simplifying the second factor: 1. \( (2x)^2 = 4x^2 \) 2. \( (2x)(3) = 6x \) 3. \( 3^2 = 9 \) Putting it all together, we have: \[ f(x) = (2x - 3)(4x^2 + 6x + 9) \] Now, we can determine the values of \( a, b, c, \) and \( d \): - \( a = 2 \) - \( b = -3 \) - \( c = 4 \) - \( d = 6 \) Therefore, the final factored form of the polynomial is: \[ f(x) = (2x - 3)(4x^2 + 6x + 9) \]