Pregunta
upstudy study bank question image url

A rectangular parking lot has a length that is 9 yards greater than the width. The area of the parking lot is 360 square yards. Find the length and the width. The parking lot has a width of 15 yards. The parking lot has a length of \( \square \) yards.

Ask by Ryan Howell. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The parking lot has a width of 15 yards and a length of 24 yards.

Solución

To determine the length and width of the rectangular parking lot, let's follow the given information step by step. ### Given: - **Area of the parking lot:** 360 square yards - **Length is 9 yards greater than the width.** ### Let: - **Width = \( w \) yards** - **Length = \( w + 9 \) yards** ### Step 1: Set Up the Equation Using the Area Formula The area of a rectangle is calculated as: \[ \text{Area} = \text{Length} \times \text{Width} \] Plugging in the known values: \[ 360 = w \times (w + 9) \] \[ w(w + 9) = 360 \] ### Step 2: Expand and Formulate the Quadratic Equation \[ w^2 + 9w = 360 \] \[ w^2 + 9w - 360 = 0 \] ### Step 3: Solve the Quadratic Equation You can solve for \( w \) using the quadratic formula: \[ w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where \( a = 1 \), \( b = 9 \), and \( c = -360 \). \[ w = \frac{-9 \pm \sqrt{9^2 - 4(1)(-360)}}{2(1)} \] \[ w = \frac{-9 \pm \sqrt{81 + 1440}}{2} \] \[ w = \frac{-9 \pm \sqrt{1521}}{2} \] \[ w = \frac{-9 \pm 39}{2} \] Since width can't be negative: \[ w = \frac{-9 + 39}{2} = \frac{30}{2} = 15 \text{ yards} \] ### Step 4: Find the Length \[ \text{Length} = w + 9 = 15 + 9 = 24 \text{ yards} \] ### **Final Answer:** - **Width:** 15 yards - **Length:** \( \boxed{24} \) yards

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the length of the parking lot, we start with the relationship between width and length. Since the width is 15 yards and the length is 9 yards greater than the width, we can calculate the length as follows: Length = Width + 9 = 15 + 9 = 24 yards. So, the parking lot has a length of 24 yards. Now, let's consider the environment! Did you know that parking lot designs often take into account not just space but also traffic flow and pedestrian safety? Engineers optimize layouts to maximize efficiency while ensuring that it’s easy and safe for drivers and pedestrians alike to navigate. A well-designed parking lot can make a huge difference in the usability of public spaces! If you're interested in calculating the area of various shapes, consider exploring geometry in real-world applications! For instance, when calculating areas for gardening, landscaping, or even building projects, understanding how to work with formulas for rectangles, triangles, and circles can help you maximize your space effectively. Plus, figuring out how different designs can impact light, drainage, and aesthetics can turn into an exciting project!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad