Pregunta
Line \( A B \) and point \( C \) are divided into two lines with a length ratio of \( 7: 5 \). If the difference in length of the segments is 3 cm , find the length of segment \( A B \).
Ask by Wright Wheeler. in Mongolia
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The length of segment \( AB \) is 18 centimeters.
Solución
Let's solve the problem step by step.
**Given:**
- Line segment \( AB \) is divided by point \( C \) into two segments with a length ratio of \( 7:5 \).
- The difference in length between the two segments \( AC \) and \( CB \) is 3 cm.
**Let:**
- \( AC = 7x \)
- \( CB = 5x \)
**Total Length of \( AB \):**
\[
AB = AC + CB = 7x + 5x = 12x
\]
**Difference in Lengths:**
\[
AC - CB = 7x - 5x = 2x
\]
According to the problem, this difference is 3 cm:
\[
2x = 3 \implies x = \frac{3}{2} = 1.5 \text{ cm}
\]
**Calculate \( AB \):**
\[
AB = 12x = 12 \times 1.5 = 18 \text{ cm}
\]
**Answer:**
The length of segment \( AB \) is **18 centimeters**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To solve this problem, let's denote the lengths of the segments as \( 7x \) and \( 5x \), where \( x \) is a common factor. According to the problem, the difference in length between these two segments is 3 cm. So, we can set up the equation: \[ 7x - 5x = 3 \] This simplifies to: \[ 2x = 3 \] Now, solving for \( x \): \[ x = \frac{3}{2} = 1.5 \, \text{cm} \] Now, we can find the lengths of the segments: \[ \text{Length of segment } AB = 7x = 7 \times 1.5 = 10.5 \, \text{cm} \] Thus, the length of segment \( A B \) is \( 10.5 \, \text{cm} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium