Pregunta
upstudy study bank question image url

Establish the following identity. \[ \frac{\tan \theta+\cot \theta}{\tan \theta-\cot \theta}=\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta} \]

Ask by Weston George. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \frac{\tan \theta + \cot \theta}{\tan \theta - \cot \theta} = \frac{1}{\sin^{2} \theta - \cos^{2} \theta} \] by expressing tan and cot in terms of sine and cosine and simplifying both sides to the same expression. \]

Solución

To establish the identity: \[ \frac{\tan \theta + \cot \theta}{\tan \theta - \cot \theta} = \frac{1}{\sin^{2} \theta - \cos^{2} \theta}, \] we'll start by expressing \(\tan \theta\) and \(\cot \theta\) in terms of sine and cosine. 1. **Express \(\tan \theta\) and \(\cot \theta\):** \[ \tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta}. \] 2. **Compute the Numerator \(\tan \theta + \cot \theta\):** \[ \tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta}, \] since \(\sin^2 \theta + \cos^2 \theta = 1\). 3. **Compute the Denominator \(\tan \theta - \cot \theta\):** \[ \tan \theta - \cot \theta = \frac{\sin \theta}{\cos \theta} - \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta - \cos^2 \theta}{\sin \theta \cos \theta}. \] 4. **Form the Ratio:** \[ \frac{\tan \theta + \cot \theta}{\tan \theta - \cot \theta} = \frac{\frac{1}{\sin \theta \cos \theta}}{\frac{\sin^2 \theta - \cos^2 \theta}{\sin \theta \cos \theta}} = \frac{1}{\sin^2 \theta - \cos^2 \theta}. \] Thus, the identity is verified: \[ \frac{\tan \theta + \cot \theta}{\tan \theta - \cot \theta} = \frac{1}{\sin^{2} \theta - \cos^{2} \theta}. \] **Answer:** By rewriting tan and cot in terms of sine and cosine and simplifying, both sides reduce to 1 ⁄ (sin²θ – cos²θ). Thus, the identity is established.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To prove the identity \[ \frac{\tan \theta+\cot \theta}{\tan \theta-\cot \theta}=\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}, \] we start by rewriting the left-hand side: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta}. \] Substituting these into the left-hand side, we get: \[ \frac{\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}}{\frac{\sin \theta}{\cos \theta} - \frac{\cos \theta}{\sin \theta}}. \] We can find a common denominator for both the numerator and the denominator: The numerator becomes: \[ \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta} \quad \text{(since } \sin^2 \theta + \cos^2 \theta = 1\text{)}. \] The denominator becomes: \[ \frac{\sin^2 \theta - \cos^2 \theta}{\sin \theta \cos \theta}. \] Now the full left-hand side can be simplified: \[ \frac{\frac{1}{\sin \theta \cos \theta}}{\frac{\sin^2 \theta - \cos^2 \theta}{\sin \theta \cos \theta}} = \frac{1}{\sin^2 \theta - \cos^2 \theta}. \] We see that both the left-hand side and the right-hand side are indeed the same: \[ \frac{\tan \theta+\cot \theta}{\tan \theta-\cot \theta} = \frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}. \] Thus, the identity is established: \[ \frac{\tan \theta+\cot \theta}{\tan \theta-\cot \theta}=\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}. \] The identity is verified.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad