Pregunta
upstudy study bank question image url

In the quadratic sequence \( 4 ; x ; y ;-11 ; \ldots \), the first three terms of the first differences are \( 2 p-4 ; p-3 \) and \( \frac{p}{2}-1 \). Determine the: 4.1 . Value(s) of \( p \). 4.2 Second difference(s). 4.3 Values of \( x \) and \( y \). Given the quadratic sequence \( 3 ; 5 ; 11 ; 21 ; \ldots \) 5.1 Write down the value of the next term, if the pattern continues. 5.2 Determine the value of the \( 48^{\text {th }} \) term. 5.3 Prove that the terms of this sequence will never be even numbers. 5.4 If all the values of this sequence are increased by 30 , determine th Gence. general term of the new sequence.

Ask by Boyd Smith. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 4:** 1. **Value of \( p \):** \( p = -2 \) 2. **Second Difference:** 3 3. **Values of \( x \) and \( y \):** \( x = -4 \), \( y = -9 \) **Problem 5:** 1. **Next Term:** 35 2. **48th Term:** 4421 3. **All Terms are Odd:** Yes, because each term is an even number plus 5, making them always odd. 4. **New General Term:** \( 2n^2 - 4n + 35 \)

Solución

Let's solve each part of the problem step-by-step. --- ### **Problem 4** **Given:** - Quadratic sequence: \( 4 ; x ; y ; -11 ; \ldots \) - First three first differences: \( 2p - 4 ; p - 3 ; \frac{p}{2} - 1 \) #### **4.1. Value(s) of \( p \)** **Solution:** For a quadratic sequence, the second differences are constant. Let's express the first differences based on the sequence terms: 1. **First difference:** \[ x - 4 = 2p - 4 \quad \Rightarrow \quad x = 2p \] 2. **Second difference:** \[ y - x = p - 3 \quad \Rightarrow \quad y = x + (p - 3) = 2p + p - 3 = 3p - 3 \] 3. **Third difference:** \[ -11 - y = \frac{p}{2} - 1 \quad \Rightarrow \quad -11 - (3p - 3) = \frac{p}{2} - 1 \] \[ -3p - 8 = \frac{p}{2} - 1 \] \[ -6p - 16 = p - 2 \quad \text{(Multiply both sides by 2)} \] \[ -7p = 14 \quad \Rightarrow \quad p = -2 \] **Answer:** \[ p = -2 \] #### **4.2. Second Difference(s)** **Solution:** Using \( p = -2 \): 1. **First differences:** \[ 2p - 4 = 2(-2) - 4 = -8 \] \[ p - 3 = -2 - 3 = -5 \] \[ \frac{p}{2} - 1 = \frac{-2}{2} - 1 = -2 \] 2. **Second differences:** \[ (-5) - (-8) = 3 \] \[ (-2) - (-5) = 3 \] **Answer:** \[ \text{Second difference is } 3 \] #### **4.3. Values of \( x \) and \( y \)** **Solution:** Using \( p = -2 \): 1. \( x = 2p = 2(-2) = -4 \) 2. \( y = 3p - 3 = 3(-2) - 3 = -9 \) **Answer:** \[ x = -4 \quad \text{and} \quad y = -9 \] --- ### **Problem 5** **Given:** - Quadratic sequence: \( 3 ; 5 ; 11 ; 21 ; \ldots \) #### **5.1. Next Term in the Sequence** **Solution:** 1. **First differences:** \[ 5 - 3 = 2 \] \[ 11 - 5 = 6 \] \[ 21 - 11 = 10 \] 2. **Second differences:** \[ 6 - 2 = 4 \] \[ 10 - 6 = 4 \] 3. **Next first difference:** \[ 10 + 4 = 14 \] 4. **Next term:** \[ 21 + 14 = 35 \] **Answer:** \[ \text{The next term is } 35 \] #### **5.2. Value of the \( 48^{\text{th}} \) Term** **Solution:** 1. **Find the general term \( T(n) \) for the sequence.** Assume \( T(n) = an^2 + bn + c \). Using the first three terms: \[ \begin{cases} a(1)^2 + b(1) + c = 3 \\ a(2)^2 + b(2) + c = 5 \\ a(3)^2 + b(3) + c = 11 \\ \end{cases} \] Simplifying: \[ \begin{cases} a + b + c = 3 \\ 4a + 2b + c = 5 \\ 9a + 3b + c = 11 \\ \end{cases} \] Subtract the first equation from the second: \[ 3a + b = 2 \] Subtract the second equation from the third: \[ 5a + b = 6 \] Subtract these two: \[ 2a = 4 \quad \Rightarrow \quad a = 2 \] Then: \[ 3(2) + b = 2 \quad \Rightarrow \quad b = -4 \] Finally: \[ 2 - 4 + c = 3 \quad \Rightarrow \quad c = 5 \] Thus, the general term: \[ T(n) = 2n^2 - 4n + 5 \] 2. **Calculate the \( 48^{\text{th}} \) term:** \[ T(48) = 2(48)^2 - 4(48) + 5 = 2(2304) - 192 + 5 = 4608 - 192 + 5 = 4421 \] **Answer:** \[ \text{The } 48^{\text{th}} \text{ term is } 4421 \] #### **5.3. Proof that All Terms are Odd Numbers** **Solution:** Given the general term: \[ T(n) = 2n^2 - 4n + 5 \] - \( 2n^2 \) is always even. - \( -4n \) is always even. - \( 5 \) is odd. Thus: \[ \text{Even} + \text{Even} + \text{Odd} = \text{Even} + \text{Odd} = \text{Odd} \] Therefore, every term \( T(n) \) is odd. **Answer:** \[ \text{All terms are odd because each term is an even number plus 5, making them always odd.} \] #### **5.4. General Term of the New Sequence (Each Term Increased by 30)** **Solution:** 1. **Original general term:** \[ T(n) = 2n^2 - 4n + 5 \] 2. **New sequence with each term increased by 30:** \[ T_{\text{new}}(n) = T(n) + 30 = 2n^2 - 4n + 5 + 30 = 2n^2 - 4n + 35 \] **Answer:** \[ \text{The general term of the new sequence is } 2n^2 - 4n + 35 \] ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To delve into the exciting world of quadratic sequences, let's first take a moment to appreciate their mathematical significance. Quadratic sequences are those enchanting sets of numbers where the second differences are constant. This property links back to mathematicians like Isaac Newton, who laid foundational work in polynomial mathematics. By unraveling these sequences, we not only sharpen our math skills but also unlock a treasure trove of patterns that appear in nature, art, and even finance! Now, regarding real-world applications, think of a quadratic sequence as a useful tool for predicting trends. For instance, in physics, the paths of projectiles can be modeled using quadratic equations, helping engineers design better structures. Additionally, in economics, these sequences can model cost functions, allowing businesses to project future profits based on current trends. So, whether you’re launching a rocket or starting a new business, quadratic sequences offer invaluable insights!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad