Responder
**Problem 4:**
1. **Value of \( p \):**
\( p = -2 \)
2. **Second Difference:**
3
3. **Values of \( x \) and \( y \):**
\( x = -4 \), \( y = -9 \)
**Problem 5:**
1. **Next Term:**
35
2. **48th Term:**
4421
3. **All Terms are Odd:**
Yes, because each term is an even number plus 5, making them always odd.
4. **New General Term:**
\( 2n^2 - 4n + 35 \)
Solución
Let's solve each part of the problem step-by-step.
---
### **Problem 4**
**Given:**
- Quadratic sequence: \( 4 ; x ; y ; -11 ; \ldots \)
- First three first differences: \( 2p - 4 ; p - 3 ; \frac{p}{2} - 1 \)
#### **4.1. Value(s) of \( p \)**
**Solution:**
For a quadratic sequence, the second differences are constant. Let's express the first differences based on the sequence terms:
1. **First difference:**
\[
x - 4 = 2p - 4 \quad \Rightarrow \quad x = 2p
\]
2. **Second difference:**
\[
y - x = p - 3 \quad \Rightarrow \quad y = x + (p - 3) = 2p + p - 3 = 3p - 3
\]
3. **Third difference:**
\[
-11 - y = \frac{p}{2} - 1 \quad \Rightarrow \quad -11 - (3p - 3) = \frac{p}{2} - 1
\]
\[
-3p - 8 = \frac{p}{2} - 1
\]
\[
-6p - 16 = p - 2 \quad \text{(Multiply both sides by 2)}
\]
\[
-7p = 14 \quad \Rightarrow \quad p = -2
\]
**Answer:**
\[
p = -2
\]
#### **4.2. Second Difference(s)**
**Solution:**
Using \( p = -2 \):
1. **First differences:**
\[
2p - 4 = 2(-2) - 4 = -8
\]
\[
p - 3 = -2 - 3 = -5
\]
\[
\frac{p}{2} - 1 = \frac{-2}{2} - 1 = -2
\]
2. **Second differences:**
\[
(-5) - (-8) = 3
\]
\[
(-2) - (-5) = 3
\]
**Answer:**
\[
\text{Second difference is } 3
\]
#### **4.3. Values of \( x \) and \( y \)**
**Solution:**
Using \( p = -2 \):
1. \( x = 2p = 2(-2) = -4 \)
2. \( y = 3p - 3 = 3(-2) - 3 = -9 \)
**Answer:**
\[
x = -4 \quad \text{and} \quad y = -9
\]
---
### **Problem 5**
**Given:**
- Quadratic sequence: \( 3 ; 5 ; 11 ; 21 ; \ldots \)
#### **5.1. Next Term in the Sequence**
**Solution:**
1. **First differences:**
\[
5 - 3 = 2
\]
\[
11 - 5 = 6
\]
\[
21 - 11 = 10
\]
2. **Second differences:**
\[
6 - 2 = 4
\]
\[
10 - 6 = 4
\]
3. **Next first difference:**
\[
10 + 4 = 14
\]
4. **Next term:**
\[
21 + 14 = 35
\]
**Answer:**
\[
\text{The next term is } 35
\]
#### **5.2. Value of the \( 48^{\text{th}} \) Term**
**Solution:**
1. **Find the general term \( T(n) \) for the sequence.**
Assume \( T(n) = an^2 + bn + c \).
Using the first three terms:
\[
\begin{cases}
a(1)^2 + b(1) + c = 3 \\
a(2)^2 + b(2) + c = 5 \\
a(3)^2 + b(3) + c = 11 \\
\end{cases}
\]
Simplifying:
\[
\begin{cases}
a + b + c = 3 \\
4a + 2b + c = 5 \\
9a + 3b + c = 11 \\
\end{cases}
\]
Subtract the first equation from the second:
\[
3a + b = 2
\]
Subtract the second equation from the third:
\[
5a + b = 6
\]
Subtract these two:
\[
2a = 4 \quad \Rightarrow \quad a = 2
\]
Then:
\[
3(2) + b = 2 \quad \Rightarrow \quad b = -4
\]
Finally:
\[
2 - 4 + c = 3 \quad \Rightarrow \quad c = 5
\]
Thus, the general term:
\[
T(n) = 2n^2 - 4n + 5
\]
2. **Calculate the \( 48^{\text{th}} \) term:**
\[
T(48) = 2(48)^2 - 4(48) + 5 = 2(2304) - 192 + 5 = 4608 - 192 + 5 = 4421
\]
**Answer:**
\[
\text{The } 48^{\text{th}} \text{ term is } 4421
\]
#### **5.3. Proof that All Terms are Odd Numbers**
**Solution:**
Given the general term:
\[
T(n) = 2n^2 - 4n + 5
\]
- \( 2n^2 \) is always even.
- \( -4n \) is always even.
- \( 5 \) is odd.
Thus:
\[
\text{Even} + \text{Even} + \text{Odd} = \text{Even} + \text{Odd} = \text{Odd}
\]
Therefore, every term \( T(n) \) is odd.
**Answer:**
\[
\text{All terms are odd because each term is an even number plus 5, making them always odd.}
\]
#### **5.4. General Term of the New Sequence (Each Term Increased by 30)**
**Solution:**
1. **Original general term:**
\[
T(n) = 2n^2 - 4n + 5
\]
2. **New sequence with each term increased by 30:**
\[
T_{\text{new}}(n) = T(n) + 30 = 2n^2 - 4n + 5 + 30 = 2n^2 - 4n + 35
\]
**Answer:**
\[
\text{The general term of the new sequence is } 2n^2 - 4n + 35
\]
---
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución