Pregunta
upstudy study bank question image url

3.1 A quadratic number pattern \( T_{n}=a n^{2}+b n+c \) has a third term equal to -1 , while the first differences of the quadratic sequence are given by: \( -12 ;-8 ;-4 \) 3.1.1 Write down the values of the first four terms of the quadratic sequence.

Ask by Long Matthews. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The first four terms of the sequence are 19, 7, –1, and –5.

Solución

To determine the first four terms of the quadratic sequence \( T_n = a n^2 + b n + c \), let's analyze the given information: 1. **Third Term (\( T_3 \)):** \[ T_3 = a(3)^2 + b(3) + c = 9a + 3b + c = -1 \] 2. **First Differences:** The first differences given are \(-12\), \(-8\), and \(-4\). These represent: \[ T_2 - T_1 = -12 \quad (1) \] \[ T_3 - T_2 = -8 \quad (2) \] \[ T_4 - T_3 = -4 \quad (3) \] Using these equations, we can find the terms step-by-step: - **From Equation (3):** \[ T_4 = T_3 + (-4) = -1 - 4 = -5 \] - **From Equation (2):** \[ T_2 = T_3 - (-8) = -1 + 8 = 7 \] - **From Equation (1):** \[ T_1 = T_2 - (-12) = 7 + 12 = 19 \] **Thus, the first four terms of the sequence are:** \[ T_1 = 19,\quad T_2 = 7,\quad T_3 = -1,\quad T_4 = -5 \] **Answer:** The first four terms of the sequence are 19, 7, –1, and –5.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the first four terms of the quadratic sequence, we start with the first differences provided: \( -12, -8, -4 \). 1. The second difference of any quadratic sequence is constant. Here, the second differences can be calculated as follows: - \( -8 - (-12) = 4 \) - \( -4 - (-8) = 4 \) This constant second difference tells us that the coefficient \( a \) in the quadratic expression \( T_n = a n^2 + bn + c \) equals \( 2 \) (since \( 2a = 4 \)). 2. Now, to find the first differences and the original terms: - Let the first term be \( T_1 = T_1 \), - The second term is \( T_2 = T_1 - 12 \), - The third term is \( T_3 = T_1 - 12 - 8 = T_1 - 20 \), - The fourth term is \( T_4 = T_1 - 12 - 8 - 4 = T_1 - 24 \). 3. We know the third term is \( T_3 = -1 \): - Setting up the equation: \( T_1 - 20 = -1 \). - Solving for \( T_1 \) gives us \( T_1 = 19 \). Now we can find: - \( T_1 = 19 \) - \( T_2 = 19 - 12 = 7 \) - \( T_3 = -1 \) - \( T_4 = 19 - 24 = -5 \) Therefore, the first four terms of the quadratic sequence are \( 19, 7, -1, -5 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad