Pregunta
upstudy study bank question image url

FIND THE EQUATION OF THE TANGENT LINE OF TE FUNCTION AT THE GIVEN VALUE(S). A \( f(x)=4 \sin (x)-2 \) at \( x=\hat{\pi} \)

Ask by Cook Adkins. in the United States
Dec 31,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the tangent line to \( f(x) = 4 \sin(x) - 2 \) at \( x = \pi \) is \( y = -4x + 4\pi - 2 \).

Solución

To find the equation of the tangent line to the function \( f(x) = 4 \sin(x) - 2 \) at \( x = \pi \), follow these steps: ### 1. **Find the Point of Tangency** First, evaluate \( f(\pi) \) to determine the y-coordinate of the point where the tangent line touches the function. \[ f(\pi) = 4 \sin(\pi) - 2 = 4 \times 0 - 2 = -2 \] So, the point of tangency is \( (\pi, -2) \). ### 2. **Determine the Slope of the Tangent Line** Next, find the derivative of \( f(x) \) to determine the slope of the tangent line at \( x = \pi \). \[ f'(x) = \frac{d}{dx} \left[ 4 \sin(x) - 2 \right] = 4 \cos(x) \] Now, evaluate the derivative at \( x = \pi \): \[ f'(\pi) = 4 \cos(\pi) = 4 \times (-1) = -4 \] So, the slope \( m \) of the tangent line is **-4**. ### 3. **Write the Equation of the Tangent Line** Using the point-slope form of a line: \[ y - y_1 = m(x - x_1) \] Plugging in the values: \[ y - (-2) = -4(x - \pi) \] \[ y + 2 = -4x + 4\pi \] \[ y = -4x + 4\pi - 2 \] ### **Final Equation** \[ \boxed{y = -4x +\,4\,\pi\,-\,2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the equation of the tangent line to the function \( f(x) = 4 \sin(x) - 2 \) at \( x = \hat{\pi} \), we first need to compute the derivative \( f'(x) \). The derivative \( f'(x) = 4 \cos(x) \). Evaluating the derivative at \( x = \hat{\pi} \): \[ f'(\hat{\pi}) = 4 \cos(\hat{\pi}) = 4(-1) = -4. \] Next, we calculate \( f(\hat{\pi}) \): \[ f(\hat{\pi}) = 4 \sin(\hat{\pi}) - 2 = 4(0) - 2 = -2. \] Now we have the slope of the tangent line as -4 and the point at which the line touches the function as \((\hat{\pi}, -2)\). Using the point-slope form \( y - y_1 = m(x - x_1) \), we can write the equation of the tangent line: \[ y - (-2) = -4(x - \hat{\pi}) \] \[ y + 2 = -4x + 4\hat{\pi} \] \[ y = -4x + 4\hat{\pi} - 2. \] And there you have it! The equation of the tangent line at \( x = \hat{\pi} \) is given by \( y = -4x + 4\hat{\pi} - 2 \). To really cozy up to the concept of tangents, did you know that the concept dates back to ancient Greece? Mathematicians like Archimedes were fascinated by the properties of curves and how they relate to lines. They laid the groundwork for modern calculus, so every time you find a tangent line, give a nod to those early thinkers! Fun fact: Tangent lines aren't just for curves! They play a crucial role in areas like physics, specifically in finding instantaneous velocity. When you're driving and you want to know your speed at a precise moment, you're essentially looking for the slope of the curve representing your position over time – the tangent line to your position function! Isn't that a cool way to see the world?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad