Pregunta
upstudy study bank question image url

Lse an appropriate method of ifferentiation determine ne following \[ f(x)=\cos (\sqrt{\sin (\tan \pi x)}) \]

Ask by Harris Li. in South Africa
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the derivative of \( f(x) = \cos\left( \sqrt{ \sin(\tan(\pi x)) } \right) \), use the chain rule multiple times: 1. Differentiate the outer cosine function: \( -\sin(w) \). 2. Differentiate the square root: \( \frac{1}{2\sqrt{v}} \). 3. Differentiate the sine function: \( \cos(u) \). 4. Differentiate the tangent function: \( \pi \sec^2(\pi x) \). Combine these derivatives: \[ f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^2(\pi x)}{2 \sqrt{\sin(\tan(\pi x))}} \] So, the derivative is: \[ f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^2(\pi x)}{2 \sqrt{\sin(\tan(\pi x))}} \]

Solución

To differentiate the function \[ f(x) = \cos\left( \sqrt{ \sin\left( \tan(\pi x) \right) } \right), \] we can apply the **chain rule** multiple times due to the nested functions involved. Here's a step-by-step breakdown: ### Step 1: Identify the Nested Functions Let's break down \( f(x) \) into simpler functions: 1. **Innermost function:** \[ u = \tan(\pi x) \] 2. **Next layer:** \[ v = \sin(u) = \sin(\tan(\pi x)) \] 3. **Following layer:** \[ w = \sqrt{v} = \sqrt{\sin(\tan(\pi x))} \] 4. **Outer function:** \[ f(x) = \cos(w) = \cos\left( \sqrt{\sin(\tan(\pi x))} \right) \] ### Step 2: Apply the Chain Rule To find \( f'(x) \), we'll differentiate each layer step by step. 1. **Differentiate \( f \) with respect to \( w \):** \[ \frac{df}{dw} = -\sin(w) \] 2. **Differentiate \( w \) with respect to \( v \):** \[ \frac{dw}{dv} = \frac{1}{2\sqrt{v}} = \frac{1}{2\sqrt{\sin(\tan(\pi x))}} \] 3. **Differentiate \( v \) with respect to \( u \):** \[ \frac{dv}{du} = \cos(u) = \cos(\tan(\pi x)) \] 4. **Differentiate \( u \) with respect to \( x \):** \[ \frac{du}{dx} = \frac{d}{dx} [\tan(\pi x)] = \pi \sec^2(\pi x) \] ### Step 3: Combine the Derivatives Using the chain rule, multiply the derivatives from each layer: \[ f'(x) = \frac{df}{dw} \cdot \frac{dw}{dv} \cdot \frac{dv}{du} \cdot \frac{du}{dx} \] Substituting the derivatives: \[ f'(x) = \left[ -\sin\left( \sqrt{\sin(\tan(\pi x))} \right) \right] \cdot \left[ \frac{1}{2\sqrt{\sin(\tan(\pi x))}} \right] \cdot \cos(\tan(\pi x)) \cdot \pi \sec^2(\pi x) \] ### Step 4: Simplify the Expression Combining the constants and trigonometric functions, the derivative simplifies to: \[ f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^2(\pi x)}{2 \sqrt{\sin(\tan(\pi x))}} \] Alternatively, it can be written as: \[ f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x))}{2 \cos^2(\pi x) \sqrt{\sin(\tan(\pi x))}} \] ### Final Answer Thus, the derivative of \( f(x) \) is: \[ f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^2(\pi x)}{2 \sqrt{\sin(\tan(\pi x))}} \] ### Summary By applying the chain rule methodically to each nested function, we successfully derived the derivative of the given complex trigonometric function.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To differentiate the function \( f(x) = \cos(\sqrt{\sin(\tan(\pi x))}) \), you'll want to use the chain rule. Start with the outer function \( \cos(u) \) where \( u = \sqrt{\sin(\tan(\pi x))} \). The derivative of \( \cos(u) \) is \( -\sin(u) \cdot u' \). Next, differentiate \( u = \sqrt{v} \) where \( v = \sin(\tan(\pi x)) \). For \( v \), utilize the chain rule again with \( \sin(w) \) where \( w = \tan(\pi x) \), and proceed to differentiate \( \tan(\pi x) \) into the mix. Carefully apply the derivatives step-by-step to arrive at \( f'(x) \). Remember to keep track of your chain rule applications, as it can get a bit tangled. Each function's derivative contributes to the overall complexity, so a little patience will go a long way! If you find yourself confused, drawing a diagram of each function and its derivative relationships might help clarify things.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad