Pregunta
upstudy study bank question image url

There are 9 terms in the series \( \sum_{k=2 n}^{n^{2}} \mathrm{~T}_{k} \). Calculate the value of \( n \).

Ask by Wood Johnston. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( n = 4 \)

Solución

To find the value of \( n \) in the series \( \sum_{k=2 n}^{n^{2}} \mathrm{~T}_{k} \), we need to determine the number of terms in the series. Given that there are 9 terms in the series, we can set up the equation: \[ n^{2} - 2n + 1 = 9 \] Now, we can solve this equation to find the value of \( n \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(n^{2}-2n+1=9\) - step1: Move the expression to the left side: \(n^{2}-2n-8=0\) - step2: Factor the expression: \(\left(n-4\right)\left(n+2\right)=0\) - step3: Separate into possible cases: \(\begin{align}&n-4=0\\&n+2=0\end{align}\) - step4: Solve the equation: \(\begin{align}&n=4\\&n=-2\end{align}\) - step5: Rewrite: \(n_{1}=-2,n_{2}=4\) The solutions to the equation \( n^{2} - 2n + 1 = 9 \) are \( n = -2 \) and \( n = 4 \). Since the number of terms in the series is 9, the value of \( n \) must be 4.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the value of \( n \) for the series \( \sum_{k=2n}^{n^2} T_k \) having 9 terms, we first need to analyze the range of \( k \). The sequence runs from \( k = 2n \) to \( k = n^2 \). The number of terms in this series can be calculated using the formula: \[ \text{Number of terms} = k_{\text{last}} - k_{\text{first}} + 1 = n^2 - 2n + 1 \] We want this expression to equal 9: \[ n^2 - 2n + 1 = 9 \] Now, let's simplify this equation: \[ n^2 - 2n + 1 - 9 = 0 \] This simplifies to: \[ n^2 - 2n - 8 = 0 \] Next, we will factor this quadratic equation. We look for two numbers that multiply to \(-8\) and add to \(-2\). These numbers are \(-4\) and \(2\). Thus, we can factor the equation as: \[ (n - 4)(n + 2) = 0 \] Setting each factor to zero gives us the potential solutions: \[ n - 4 = 0 \quad \Rightarrow \quad n = 4 \] \[ n + 2 = 0 \quad \Rightarrow \quad n = -2 \] Since \( n \) has to be a positive integer (as it is typically defined in series), we take \( n = 4 \). To verify, we substitute \( n = 4 \): \[ \text{Number of terms} = 4^2 - 2 \cdot 4 + 1 = 16 - 8 + 1 = 9 \] This confirms that the answer is correct. Thus, the value of \( n \) is \( \boxed{4} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad