Pregunta
upstudy study bank question image url

For each year, \( t \), the population of a forest of trees, call it Forest \( A \), is represented by the function \( A(t)=111(1.025)^{t} \). In a neighboring forest, call it Forest \( B \), the population of the same type of tree is represented by the function \( B(t)=82(1.03)^{t} \). \( a \). Which forest's population is growing at a faster rate? Select an answer \( \hat{v} \) \( b \). Which forest had a greater number of trees initially? Select an answer \( \hat{v} \) By how many (round to the nearest tree)? trees \( c \). Assuming the population growth models continue to represent the growth of the forests, which forest will have a greater number of trees after 50 years (round to the nearest tree)? Select an answer \( \hat{v} \) By how many?

Ask by Ellis Mills. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a. Forest B** is growing faster. **b. Forest A** started with more trees by **29**. **c. After 50 years, Forest A** will have more trees by **21**.

Solución

Let's analyze each part of the problem step by step. ### **a. Which forest's population is growing at a faster rate?** - **Forest A:** \( A(t) = 111(1.025)^t \) - **Growth Rate:** 2.5% per year - **Forest B:** \( B(t) = 82(1.03)^t \) - **Growth Rate:** 3.0% per year **Answer:** **Forest B** is growing at a faster rate because its annual growth rate of **3.0%** is higher than Forest A's **2.5%**. --- ### **b. Which forest had a greater number of trees initially? By how many?** - **Initial Population of Forest A:** \( A(0) = 111 \) trees - **Initial Population of Forest B:** \( B(0) = 82 \) trees **Answer:** **Forest A** had a greater number of trees initially. **Difference:** \( 111 - 82 = 29 \) trees --- ### **c. Which forest will have a greater number of trees after 50 years? By how many?** - **Population after 50 years:** - **Forest A:** \[ A(50) = 111 \times (1.025)^{50} \approx 111 \times 3.434 \approx 381 \text{ trees} \] - **Forest B:** \[ B(50) = 82 \times (1.03)^{50} \approx 82 \times 4.392 \approx 360 \text{ trees} \] **Answer:** After **50 years**, **Forest A** will have a greater number of trees. **Difference:** \( 381 - 360 = 21 \) trees --- ### **Summary of Answers:** a. **Forest B** is growing at a faster rate. b. **Forest A** had a greater number of trees initially by **29 trees**. c. After 50 years, **Forest A** will have more trees by **21 trees**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine which forest's population is growing at a faster rate, we can examine the growth rates represented by the coefficients of \( t \) in the functions. For Forest \( A \), the growth rate is \( 2.5\% \) (or \( 0.025 \)), while for Forest \( B \), it is \( 3\% \) (or \( 0.03 \)). Thus, the answer to part \( a \) is that Forest \( B \) is growing at a faster rate. For the initial populations, we see that Forest \( A \) has 111 trees and Forest \( B \) has 82 trees. Therefore, the answer to part \( b \) is that Forest \( A \) had a greater number of trees initially. Specifically, the difference is \( 111 - 82 = 29 \) trees. Now, let's project the populations after 50 years. For Forest \( A \): \[ A(50) = 111(1.025)^{50} \approx 111 \times 3.208 \approx 356 \text{ trees} \] For Forest \( B \): \[ B(50) = 82(1.03)^{50} \approx 82 \times 4.384 \approx 360 \text{ trees} \] Thus, for part \( c \), Forest \( B \) will have a greater number of trees after 50 years by approximately \( 360 - 356 = 4 \) trees. So the complete answers are: a. Forest \( B \), b. Forest \( A \), by 29 trees, c. Forest \( B \), by 4 trees.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad