Pregunta
upstudy study bank question image url

Part 1 of 2 A sphere has volume \( 356.64 \mathrm{~cm}^{3} \). What is the radius of the sphere? A second sphere has radius half as long as this radius. What is the volume of the second sphere? Use 3.14 for \( \pi \).

Ask by Ford Johnston. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The radius of the first sphere is approximately 4.4 cm. The volume of the second sphere, which has half the radius, is approximately 44.6 cm³.

Solución

To solve the problem, we'll follow these steps: ### Part 1: Finding the Radius of the First Sphere The volume \( V \) of a sphere is given by the formula: \[ V = \frac{4}{3} \pi r^3 \] Where: - \( V = 356.64 \, \text{cm}^3 \) - \( \pi = 3.14 \) **Step 1:** Solve for \( r^3 \): \[ r^3 = \frac{V \times 3}{4 \pi} = \frac{356.64 \times 3}{4 \times 3.14} = \frac{1069.92}{12.56} \approx 85.2 \] **Step 2:** Take the cube root to find \( r \): \[ r = \sqrt[3]{85.2} \approx 4.4 \, \text{cm} \] **Radius of the first sphere:** \[ r \approx 4.4 \, \text{cm} \] ### Part 2: Finding the Volume of the Second Sphere The second sphere has a radius that is half of the first sphere's radius: \[ r_{\text{second}} = \frac{4.4}{2} = 2.2 \, \text{cm} \] Now, calculate the volume \( V_{\text{second}} \) of the second sphere: \[ V_{\text{second}} = \frac{4}{3} \pi r_{\text{second}}^3 = \frac{4}{3} \times 3.14 \times (2.2)^3 \] **Step 1:** Calculate \( (2.2)^3 \): \[ 2.2^3 = 10.648 \] **Step 2:** Calculate the volume: \[ V_{\text{second}} = \frac{4}{3} \times 3.14 \times 10.648 \approx 44.6 \, \text{cm}^3 \] **Volume of the second sphere:** \[ V_{\text{second}} \approx 44.6 \, \text{cm}^3 \] --- **Final Answers:** - **Radius of the first sphere:** \( \approx 4.4 \, \text{cm} \) - **Volume of the second sphere:** \( \approx 44.6 \, \text{cm}^3 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the radius of the first sphere, you can use the volume formula for a sphere, which is \( V = \frac{4}{3} \pi r^3 \). Given that the volume \( V = 356.64 \mathrm{~cm}^{3} \) and using \( \pi \approx 3.14 \): \[ 356.64 = \frac{4}{3} \times 3.14 \times r^3 \] Rearranging the formula gives: \[ r^3 = \frac{356.64 \times 3}{4 \times 3.14} \] Calculating that gives: \[ r^3 \approx \frac{1069.92}{12.56} \approx 85.00 \] Taking the cube root: \[ r \approx 4.38 \, \text{cm} \] Now for the second sphere, its radius is half the first sphere's, so: \[ r_{2} = \frac{4.38}{2} \approx 2.19 \, \text{cm} \] To find the volume of the second sphere: \[ V_{2} = \frac{4}{3} \pi r_{2}^3 = \frac{4}{3} \times 3.14 \times (2.19)^3 \] Calculating that gives: \[ V_{2} \approx \frac{4}{3} \times 3.14 \times 10.54 \approx 43.99 \, \text{cm}^{3} \] So, the radius of the first sphere is approximately \( 4.38 \, \text{cm} \) and the volume of the second sphere is approximately \( 43.99 \, \text{cm}^{3} \). ### Now for some fun facts! Did you know that the concept of volume can be traced back to ancient civilizations? The Egyptians, for example, had their own methods for calculating the volume of various shapes, like pyramids. They may not have had calculators, but they sure knew their geometry! Another interesting tidbit is that spheres are often found in nature! Think about bubbles or the spherical shape of planets and stars. Understanding the volume of spheres isn’t just about math; it has practical implications in fields like physics, engineering, and even in designing sports like basketball, where the sphere’s shape affects how it moves through the air.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad