Use your calculator or other handheld technology to graph \( y=4 x^{2}-24 x+38 \). Then answer the following questions. What is the vertex of the graph? Give your answer in coordinate form. The vertex is
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the vertex of the quadratic equation \( y = 4x^2 - 24x + 38 \), you can use the vertex formula, which is \( x = -\frac{b}{2a} \). Here, \( a = 4 \) and \( b = -24 \). Plugging in the values gives \( x = -\frac{-24}{2 \cdot 4} = 3 \). To find the y-coordinate, substitute \( x = 3 \) back into the equation, yielding \( y = 4(3^2) - 24(3) + 38 = 38 - 72 + 38 = 4 \). Thus, the vertex is (3, 4). Now, if you were to visualize this quadratic function on your graphing calculator, you'd see a lovely upward opening parabola with its tip (vertex) at the genial point (3, 4). Doesn’t it feel satisfying to pinpoint that sweet spot where the quadratic takes a break before rising up again?