Pregunta
upstudy study bank question image url

Uploads: You must upload your work in the last question on the assessment. Your score is not valid unless all work is uploaded on that question and can be viewed and read by your instructor. Work: Unless a problem says otherwise, you may only use graphing calculators (ie Desmos) to check your answers. All algebraic work and steps must be shown and be consistent with the appropriate readings. Resources: These are the ONLY authorized resources you may use on this assessment: For each equation below, determine if the function is Odd, Even, or Neither. If this is a quiz or exam question, all steps and logic must be shown for full credit. \( f(x)=x^{2}+4 \) Select an answer \( v \) \( g(x)=(x-4)^{2} \) Select an answer \( v \) \( h(x)=\frac{4}{x} \) Select an answer \( v \)

Ask by Thornton Hammond. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- \( f(x) = x^2 + 4 \) is **even**. - \( g(x) = (x - 4)^2 \) is **neither**. - \( h(x) = \frac{4}{x} \) is **odd**.

Solución

To determine whether the functions \( f(x) \), \( g(x) \), and \( h(x) \) are odd, even, or neither, we will use the definitions of even and odd functions: - A function \( f(x) \) is **even** if \( f(-x) = f(x) \) for all \( x \) in the domain of \( f \). - A function \( f(x) \) is **odd** if \( f(-x) = -f(x) \) for all \( x \) in the domain of \( f \). Let's analyze each function step by step. ### 1. Function \( f(x) = x^2 + 4 \) **Step 1:** Calculate \( f(-x) \): \[ f(-x) = (-x)^2 + 4 = x^2 + 4 \] **Step 2:** Compare \( f(-x) \) with \( f(x) \): \[ f(-x) = x^2 + 4 = f(x) \] Since \( f(-x) = f(x) \), the function \( f(x) \) is **even**. ### 2. Function \( g(x) = (x - 4)^2 \) **Step 1:** Calculate \( g(-x) \): \[ g(-x) = (-x - 4)^2 = (-(x + 4))^2 = (x + 4)^2 \] **Step 2:** Expand \( g(-x) \): \[ g(-x) = x^2 + 8x + 16 \] **Step 3:** Compare \( g(-x) \) with \( g(x) \): \[ g(x) = (x - 4)^2 = x^2 - 8x + 16 \] Since \( g(-x) \neq g(x) \) and \( g(-x) \neq -g(x) \), the function \( g(x) \) is **neither** even nor odd. ### 3. Function \( h(x) = \frac{4}{x} \) **Step 1:** Calculate \( h(-x) \): \[ h(-x) = \frac{4}{-x} = -\frac{4}{x} \] **Step 2:** Compare \( h(-x) \) with \( h(x) \): \[ h(-x) = -h(x) \] Since \( h(-x) = -h(x) \), the function \( h(x) \) is **odd**. ### Summary of Results: - \( f(x) = x^2 + 4 \) is **even**. - \( g(x) = (x - 4)^2 \) is **neither**. - \( h(x) = \frac{4}{x} \) is **odd**. These conclusions can be summarized as follows: - \( f(x) \): Even - \( g(x) \): Neither - \( h(x) \): Odd

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When determining if functions are odd, even, or neither, a helpful trick is to analyze the behavior of the function when you substitute \(-x\) for \(x\). For a function to be even, \(f(-x) = f(x)\) must hold true. For a function to be odd, \(f(-x) = -f(x)\) should be satisfied. For example, with \(f(x) = x^2 + 4\): \(f(-x) = (-x)^2 + 4 = x^2 + 4\), which equals \(f(x)\) - so it's even! Similarly, for \(g(x) = (x - 4)^2\), you'll find it’s even too. But for \(h(x) = \frac{4}{x}\), \(h(-x) = \frac{4}{-x} = -\frac{4}{x}\), indicating it's odd. Now, isn't that fascinating? If you want to dive deeper into understanding these properties, consider practicing with various functions and their characteristics. Like, what about \(k(x) = x^3 - 2x\)? Find out whether it's odd, even, or neither by applying the substitution method! You'll uncover a treasure trove of mathematical insights just waiting for you!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad