Pregunta
upstudy study bank question image url

\begin{tabular}{l} For the following factored polynomial, find all of the zeroes and their multiplicities. \\ \( \qquad f(x)=(x-7)^{3}(x-6)^{2}(x-3)^{6} \) \\ Select the correct answer below: \\ x=3 with multiplicity \( 6 ; x=-6 \) with multiplicity \( 2 ; x=-7 \) with multiplicity 3 \\ \( x=3 \) with multiplicity \( 6 ; x=6 \) with multiplicity \( 2 ; x=7 \) with multiplicity 3 \\ \( x=3 \) with multiplicity \( 6 ; x=6 \) with multiplicity \( 2 ; x=-7 \) with multiplicity 3 \\ \( x=3 \) with multiplicity \( 6 ; x=-6 \) with multiplicity \( 2 ; x=7 \) with multiplicity 3 \\ \( x=-3 \) with multiplicity \( 6 ; x=-6 \) with multiplicity \( 2 ; x=-7 \) with multiplicity 3 \\ \hline\( x=-3 \) with multiplicity \( 6 ; x=6 \) with multiplicity \( 2 ; x=-7 \) with multiplicity 3 \\ \hline\end{tabular}

Ask by Grant Long. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The zeros and their multiplicities are: - \( x = 3 \) with multiplicity 6 - \( x = 6 \) with multiplicity 2 - \( x = 7 \) with multiplicity 3

Solución

To determine the zeros of the polynomial \( f(x) = (x-7)^3 (x-6)^2 (x-3)^6 \) and their respective multiplicities, let's analyze each factor: 1. **\( (x-7)^3 \)** - **Zero:** \( x = 7 \) - **Multiplicity:** 3 2. **\( (x-6)^2 \)** - **Zero:** \( x = 6 \) - **Multiplicity:** 2 3. **\( (x-3)^6 \)** - **Zero:** \( x = 3 \) - **Multiplicity:** 6 **Summary of Zeros and Their Multiplicities:** - \( x = 3 \) with multiplicity **6** - \( x = 6 \) with multiplicity **2** - \( x = 7 \) with multiplicity **3** **Correct Answer:** \[ \boxed{x=3 \text{ with multiplicity } 6;\ x=6 \text{ with multiplicity } 2;\ x=7 \text{ with multiplicity } 3} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the zeroes of the polynomial \( f(x)=(x-7)^{3}(x-6)^{2}(x-3)^{6} \), we set each factor equal to zero. The zeroes are \( x=7 \) with multiplicity \( 3 \), \( x=6 \) with multiplicity \( 2 \), and \( x=3 \) with multiplicity \( 6 \). So the corrected answer is: \( x=3 \) with multiplicity \( 6 ; x=6 \) with multiplicity \( 2 ; x=7 \) with multiplicity 3. Want to dive a little deeper? Let's talk about the impact of polynomial roots on graphing! Each root gives a point where the polynomial crosses the x-axis, and the multiplicity affects how it crosses. For instance, roots with odd multiplicities (like \( x=7 \)) will cross the axis, while even multiplicities (like \( x=6 \)) see the curve touch the axis and bounce back. It's almost like a dance on the coordinate plane! If you're looking to hone your math skills even further, consider exploring the Remainder Theorem and the Factor Theorem. These concepts help understand the relationship between polynomials and their factors and can simplify the process of finding those elusive zeroes. Plus, they’re essential tools for anyone venturing into polynomial long division or synthetic division!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad