Find the following trigonometric ratios of \( \theta \) if \( \begin{aligned} \sin (\theta) & =\frac{4}{5} \text { and } \cos (\theta)=\frac{3}{5} \text {. Answer exactly. } \\ \tan (\theta) & =\square \\ \cot (\theta) & =\square \\ \sec (\theta) & =\square \\ \csc (\theta) & =\square\end{aligned} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the remaining trigonometric ratios, we start with the given values of \( \sin(\theta) \) and \( \cos(\theta) \). 1. **Tangent**: \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] 2. **Cotangent**: \[ \cot(\theta) = \frac{1}{\tan(\theta)} = \frac{1}{\frac{4}{3}} = \frac{3}{4} \] 3. **Secant**: \[ \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{1}{\frac{3}{5}} = \frac{5}{3} \] 4. **Cosecant**: \[ \csc(\theta) = \frac{1}{\sin(\theta)} = \frac{1}{\frac{4}{5}} = \frac{5}{4} \] Now, compiling all the values we have: \[ \begin{aligned} \tan(\theta) & = \frac{4}{3} \\ \cot(\theta) & = \frac{3}{4} \\ \sec(\theta) & = \frac{5}{3} \\ \csc(\theta) & = \frac{5}{4} \end{aligned} \]