Unit 7 Test - Differential Equations 11. Consider the differential equation \( \frac{d y}{d x}=\frac{e^{x}-1}{2 y} \). If \( y=4 \) when \( x=0 \) what is a value of \( y \) when \( x=1 \) ?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve the differential equation \( \frac{d y}{d x}=\frac{e^{x}-1}{2 y} \), we can separate the variables and integrate. Rearranging gives us \( 2y \, dy = (e^{x}-1) \, dx \). Integrating both sides: \[ \int 2y \, dy = \int (e^{x}-1) \, dx \] This leads to: \[ y^2 = e^{x} - x + C \] Given the initial condition \( y(0) = 4 \): \[ 4^2 = e^{0} - 0 + C \Rightarrow 16 = 1 + C \Rightarrow C = 15 \] Thus, the equation becomes: \[ y^2 = e^{x} - x + 15 \] Now substituting \( x = 1 \): \[ y^2 = e^{1} - 1 + 15 = e - 1 + 15 = e + 14 \] Therefore, \( y = \sqrt{e + 14} \). Hence, the value of \( y \) when \( x = 1 \) is \( \sqrt{e + 14} \).