Pregunta
upstudy study bank question image url

The price of one small packet and one big packet of sugar cane juice are RMx and RMy respectively. Haziq buys 6 small packets and 5 big packets of sugar cane juice at a total of RM19. The difference in price between one small packet and one big packet of the sugar cane juice is 50 sen. Using the matrix method, calculate the values of \( x \) and \( y \).

Ask by Gray Cole. in Malaysia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The small packet costs RM 1.50 and the big packet costs RM 2.00.

Solución

To solve the problem using the **matrix method**, we'll start by setting up the system of equations based on the given information. ### Step 1: Define Variables - Let \( x \) be the price of one small packet of sugar cane juice (in RM). - Let \( y \) be the price of one big packet of sugar cane juice (in RM). ### Step 2: Create the System of Equations Based on the problem: 1. Haziq buys 6 small packets and 5 big packets for a total of RM19: \[ 6x + 5y = 19 \] 2. The difference in price between one small packet and one big packet is RM0.50: \[ y - x = 0.5 \] ### Step 3: Represent the System as a Matrix Equation The system can be written in matrix form \( A\mathbf{v} = \mathbf{b} \) as follows: \[ \begin{bmatrix} 6 & 5 \\ -1 & 1 \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} 19 \\ 0.5 \\ \end{bmatrix} \] ### Step 4: Solve the Matrix Equation To find \( x \) and \( y \), we can use substitution or matrix inversion. Here, we'll proceed with substitution for simplicity. From the second equation: \[ y = x + 0.5 \] Substitute \( y \) into the first equation: \[ 6x + 5(x + 0.5) = 19 \] \[ 6x + 5x + 2.5 = 19 \] \[ 11x = 16.5 \] \[ x = \frac{16.5}{11} = 1.5 \, \text{RM} \] Now, substitute \( x = 1.5 \) back into \( y = x + 0.5 \): \[ y = 1.5 + 0.5 = 2.0 \, \text{RM} \] ### Conclusion The prices are: - **Small Packet (\( x \))**: RM 1.50 - **Big Packet (\( y \))**: RM 2.00 **Final Answer:** The small packet costs RM 1.50 and the big packet costs RM 2.00.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equations using the matrix method, first, we identify the equations based on the problem statement. 1. The total cost equation: \( 6x + 5y = 19 \) 2. The price difference equation: \( x - y = 0.5 \) Now, we can express this system of equations in matrix form \( Ax = B \). The coefficients matrix \( A \) and variable vector \( x \) can be set up as follows: \[ A = \begin{pmatrix} 6 & 5 \\ 1 & -1 \end{pmatrix}, \quad x = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 19 \\ 0.5 \end{pmatrix} \] Now, we can solve for \( x \) and \( y \) using the inverse of matrix \( A \). 1. First, calculate the determinant of \( A \): \[ \text{det}(A) = (6)(-1) - (5)(1) = -6 - 5 = -11 \] 2. Next, find the inverse of \( A \): \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} -1 & -5 \\ -1 & 6 \end{pmatrix} = \frac{1}{-11} \begin{pmatrix} -1 & -5 \\ -1 & 6 \end{pmatrix} = \begin{pmatrix} \frac{1}{11} & \frac{5}{11} \\ \frac{1}{11} & -\frac{6}{11} \end{pmatrix} \] 3. Now compute \( x = A^{-1}B \): \[ x = \begin{pmatrix} \frac{1}{11} & \frac{5}{11} \\ \frac{1}{11} & -\frac{6}{11} \end{pmatrix} \begin{pmatrix} 19 \\ 0.5 \end{pmatrix} \] Calculating the multiplication: \[ x_1 = \frac{1}{11}(19) + \frac{5}{11}(0.5) = \frac{19}{11} + \frac{2.5}{11} = \frac{21.5}{11} = 1.9545 \] \[ x_2 = \frac{1}{11}(19) - \frac{6}{11}(0.5) = \frac{19}{11} - \frac{3}{11} = \frac{16}{11} = 1.4545 \] Thus, approximately, \[ x \approx 1.95, \quad y \approx 1.45. \] In RM terms, the approximate prices are: **\(x \approx 1.95\) (for small packet)** and **\(y \approx 1.45\) (for big packet)**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad