What is the frequency of yellow light with an energy of \( 3.4 \times 10^{-19} \mathrm{~J} \) ? \[ \begin{array}{c}\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\ {[?] \times 10^{[?]} \mathrm{Hz}}\end{array} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the frequency of yellow light given its energy, we can use the equation: \[ E = h \cdot f, \] where \( E \) is energy, \( h \) is Planck's constant, and \( f \) is frequency. Rearranging the formula to solve for frequency gives: \[ f = \frac{E}{h}. \] Substituting the provided values: \[ f = \frac{3.4 \times 10^{-19} \mathrm{~J}}{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{s}}. \] Calculating that, we get: \[ f \approx 5.13 \times 10^{14} \mathrm{~Hz}. \] So, the frequency of yellow light is approximately \( 5.13 \times 10^{14} \mathrm{~Hz} \).