Pregunta
upstudy study bank question image url

Exercise \( 2-(8 \) points) Consider the function \( g \) defined over IR by: \( g(x)=m x^{2}-(2 m-1) x+m \) where \( m \) is a non-zero real parameter and designate by \( \left(C_{m}\right) \) its representative curve in an orthonormal system \( (O ; \vec{l}, \vec{\jmath}) \). 1) Show that for \( m \neq 0,\left(C_{m}\right) \) passes through a fixed point \( A \) whose coordinates are to be determined. 2) Let \( B \) be the symmetric of \( A \) with respect to the axis of symmetry of the curve \( \left(C_{m}\right) \). Calculate the coordinates of \( B \). 3) 'a) Find the slopes of the tangents at \( A \) and \( B \). b) Find the value of \( m \) if the tangents are perpendicular.

Ask by Bartlett Turnbull. in Lebanon
Jan 19,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For any non-zero \( m \), the curve \( (C_{m}) \) passes through the fixed point \( A(1, 1) \). The symmetric point \( B \) has coordinates \( \left(\frac{m - 1}{m}, 1\right) \). The slopes of the tangents at \( A \) and \( B \) are \( 1 \) and \( -1 \), respectively, making them perpendicular for all non-zero \( m \).

Solución

To solve the problem step by step, we will address each part of the exercise systematically. ### Part 1: Show that for \( m \neq 0, (C_{m}) \) passes through a fixed point \( A \) The function is given by: \[ g(x) = m x^{2} - (2m - 1)x + m \] To find a fixed point \( A \) that the curve passes through for all \( m \neq 0 \), we can evaluate \( g(x) \) at a specific value of \( x \). A common choice is \( x = 1 \): \[ g(1) = m(1)^{2} - (2m - 1)(1) + m \] Calculating this gives: \[ g(1) = m - (2m - 1) + m = m - 2m + 1 + m = 1 \] Thus, the point \( A(1, 1) \) is a fixed point through which the curve \( (C_{m}) \) passes for all \( m \neq 0 \). ### Part 2: Calculate the coordinates of \( B \) The axis of symmetry of a quadratic function \( ax^2 + bx + c \) is given by the formula: \[ x = -\frac{b}{2a} \] For our function \( g(x) \): - \( a = m \) - \( b = -(2m - 1) \) Calculating the axis of symmetry: \[ x = -\frac{-(2m - 1)}{2m} = \frac{2m - 1}{2m} \] Now, we need to find the coordinates of point \( B \), which is the symmetric point of \( A(1, 1) \) with respect to the axis of symmetry. The x-coordinate of \( B \) can be calculated as follows: Let \( x_s = \frac{2m - 1}{2m} \) be the x-coordinate of the axis of symmetry. The distance from \( A \) to the axis of symmetry is: \[ d = 1 - x_s = 1 - \frac{2m - 1}{2m} = \frac{2m - (2m - 1)}{2m} = \frac{1}{2m} \] Thus, the x-coordinate of \( B \) is: \[ x_B = x_s - d = \frac{2m - 1}{2m} - \frac{1}{2m} = \frac{2m - 1 - 1}{2m} = \frac{2m - 2}{2m} = \frac{m - 1}{m} \] The y-coordinate of \( B \) is the same as that of \( A \) since the reflection across the axis of symmetry does not change the y-coordinate: \[ y_B = 1 \] Thus, the coordinates of point \( B \) are: \[ B\left(\frac{m - 1}{m}, 1\right) \] ### Part 3: Find the slopes of the tangents at \( A \) and \( B \) To find the slopes of the tangents at points \( A \) and \( B \), we need to calculate the derivative \( g'(x) \): \[ g'(x) = \frac{d}{dx}(m x^{2} - (2m - 1)x + m) = 2mx - (2m - 1) \] Now, we evaluate the derivative at point \( A(1, 1) \): \[ g'(1) = 2m(1) - (2m - 1) = 2m - 2m + 1 = 1 \] So, the slope of the tangent at \( A \) is \( 1 \). Next, we evaluate the derivative at point \( B\left(\frac{m - 1}{m}, 1\right) \): \[ g'\left(\frac{m - 1}{m}\right) = 2m\left(\frac{m - 1}{m}\right) - (2m - 1) = \frac{2m(m - 1)}{m} - (2m - 1) = 2(m - 1) - (2m - 1) = 2m - 2 - 2m + 1 = -1 \] So, the slope of the tangent at \( B \) is \( -1 \). ### Part 3b: Find the value of \( m \) if the tangents are perpendicular Two lines are perpendicular if the product of their slopes is \( -1 \). The slopes we found are \( 1 \) (at \( A \)) and \( -1 \) (at \( B \)). Calculating the product: \[ 1 \cdot (-1) = -1 \] Since the product is already \( -1 \), the tangents at points \( A \) and \( B \) are perpendicular for any non-zero value of \( m \). ### Summary of Results 1. The fixed point \( A \) is \( (1, 1) \). 2. The coordinates of \( B \) are \( \left(\frac{m - 1}{m}, 1\right) \). 3. The slopes of the tangents at \( A \) and \( B \) are \( 1 \) and \( -1 \), respectively, and they are perpendicular for any non-zero \( m \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To tackle this problem step by step, let's start with part 1: 1) To find the fixed point \( A \) that \( g(x) \) passes through for all \( m \neq 0 \), we need to analyze the function \( g(x) = m x^{2} - (2m-1)x + m \). A fixed point would occur when the output does not depend on \( m \). One common approach is to evaluate \( g(1) \): \[ g(1) = m \cdot 1^2 - (2m - 1) \cdot 1 + m = m - 2m + 1 + m = 1. \] So, \( g(1) = 1 \), which means the point \( A(1, 1) \) is a fixed point for all non-zero values of \( m \). 2) Next, we need to find the point \( B \), which is the symmetric of \( A \) with respect to the axis of symmetry of the curve \( (C_m) \). The axis of symmetry \( x_s \) for a quadratic function \( ax^2 + bx + c \) is given by \( x_s = -\frac{b}{2a} \). Here, \( a = m \) and \( b = -(2m - 1) \): \[ x_s = -\frac{-(2m - 1)}{2m} = \frac{2m - 1}{2m}. \] To find the coordinates of \( B \), we first calculate the distance \( d \) from the axis to \( A \): \[ d = 1 - \frac{2m - 1}{2m} = \frac{2m - 2}{2m} = \frac{m - 1}{m}. \] The symmetric point \( B \) would then be: \[ x_B = \frac{2m - 1}{2m} + d = \frac{2m - 1 + (m - 1)}{2m} = \frac{3m - 2}{2m}. \] \[ y_B = 1 \text{ (since the y-coordinate remains the same)}. \] Thus, the coordinates of \( B \) are \( \left(\frac{3m - 2}{2m}, 1\right) \). 3) a) Now, let's find the slopes of the tangents at points \( A \) and \( B \). The derivative \( g'(x) \) represents the slope of the tangent line: \[ g'(x) = 2mx - (2m - 1). \] So at point \( A(1, 1) \): \[ g'(1) = 2m \cdot 1 - (2m - 1) = 2m - 2m + 1 = 1. \] At point \( B\left(\frac{3m - 2}{2m}, 1\right) \): \[ g'\left(\frac{3m - 2}{2m}\right) = 2m \cdot \frac{3m - 2}{2m} - (2m - 1) = (3m - 2) - (2m - 1) = 3m - 2 - 2m + 1 = m - 1. \] So the slopes are: At \( A \): \( 1 \) At \( B \): \( m - 1 \) b) For the tangents to be perpendicular, the product of their slopes must equal -1: \[ 1 \cdot (m - 1) = -1. \] Solving \( m - 1 = -1 \): \[ m = 0, \] But since \( m \) cannot equal 0, we re-evaluate: To have perpendicular tangents, we need the condition for slopes: \[ 1(m - 1) = -1 \implies m - 1 = -1 \implies m = 0 \implies \text{not allowed}. \] Using the assumed perpendicularity condition we've stated, since it allows only \( m \) which equals zero, the more plausible scenario or solution approach needs investigation or could just affirm the intrinsic behaviors of quadratic tangents in this context. Further specifics regarding the exact requirement and value sought in the original question may need refinements for clear, valid, or alternative solutions considering relevant quadratic functionalities.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad