Pregunta
upstudy study bank question image url

0. Calculate the frequency of a wave with a: 10.1 speed of \( 200 \mathrm{~m} \cdot \mathrm{~s}^{-1} \) and a wavelength of 1200 m . 10.2 wavelength of 50 m and a speed of \( 250 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Calculate the wavelength of a wave with \( \mathrm{a}: \) 11.1 frequency of 20 Hz and a speed of \( 120 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). 11.2 speed of \( 150 \mathrm{~m} \cdot \mathrm{~s}^{-1} \) and a frequency of 30 Hz .

Ask by Kelly George. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Calculations:** 1. **Frequency Calculations:** - **10.1:** Speed = 200 m/s, Wavelength = 1200 m → Frequency ≈ 0.167 Hz - **10.2:** Wavelength = 50 m, Speed = 250 m/s → Frequency = 5 Hz 2. **Wavelength Calculations:** - **11.1:** Frequency = 20 Hz, Speed = 120 m/s → Wavelength = 6 m - **11.2:** Speed = 150 m/s, Frequency = 30 Hz → Wavelength = 5 m **Summary:** - 10.1: Frequency ≈ 0.167 Hz - 10.2: Frequency = 5 Hz - 11.1: Wavelength = 6 m - 11.2: Wavelength = 5 m

Solución

Sure, let's solve each part step by step using the fundamental wave equation: \[ v = f \lambda \] Where: - \( v \) = wave speed (meters per second, m/s) - \( f \) = frequency (Hertz, Hz) - \( \lambda \) = wavelength (meters, m) We can rearrange this equation to solve for frequency (\( f \)) or wavelength (\( \lambda \)) as needed: - To find frequency: \( f = \frac{v}{\lambda} \) - To find wavelength: \( \lambda = \frac{v}{f} \) --- ### **10. Calculate the Frequency of a Wave** #### **10.1** Given: - **Speed (\( v \))** = \( 200 \, \mathrm{m/s} \) - **Wavelength (\( \lambda \))** = \( 1200 \, \mathrm{m} \) **Solution:** \[ f = \frac{v}{\lambda} = \frac{200 \, \mathrm{m/s}}{1200 \, \mathrm{m}} = \frac{1}{6} \, \mathrm{Hz} \approx 0.167 \, \mathrm{Hz} \] **Answer:** The frequency is approximately **0.167 Hz**. --- #### **10.2** Given: - **Wavelength (\( \lambda \))** = \( 50 \, \mathrm{m} \) - **Speed (\( v \))** = \( 250 \, \mathrm{m/s} \) **Solution:** \[ f = \frac{v}{\lambda} = \frac{250 \, \mathrm{m/s}}{50 \, \mathrm{m}} = 5 \, \mathrm{Hz} \] **Answer:** The frequency is **5 Hz**. --- ### **11. Calculate the Wavelength of a Wave** #### **11.1** Given: - **Frequency (\( f \))** = \( 20 \, \mathrm{Hz} \) - **Speed (\( v \))** = \( 120 \, \mathrm{m/s} \) **Solution:** \[ \lambda = \frac{v}{f} = \frac{120 \, \mathrm{m/s}}{20 \, \mathrm{Hz}} = 6 \, \mathrm{m} \] **Answer:** The wavelength is **6 meters**. --- #### **11.2** Given: - **Speed (\( v \))** = \( 150 \, \mathrm{m/s} \) - **Frequency (\( f \))** = \( 30 \, \mathrm{Hz} \) **Solution:** \[ \lambda = \frac{v}{f} = \frac{150 \, \mathrm{m/s}}{30 \, \mathrm{Hz}} = 5 \, \mathrm{m} \] **Answer:** The wavelength is **5 meters**. --- ### **Summary of Results** | Problem | Given | Calculated Value | |---------|---------------------------|-------------------| | 10.1 | \( v = 200 \, \mathrm{m/s} \), \( \lambda = 1200 \, \mathrm{m} \) | \( f \approx 0.167 \, \mathrm{Hz} \) | | 10.2 | \( v = 250 \, \mathrm{m/s} \), \( \lambda = 50 \, \mathrm{m} \) | \( f = 5 \, \mathrm{Hz} \) | | 11.1 | \( f = 20 \, \mathrm{Hz} \), \( v = 120 \, \mathrm{m/s} \) | \( \lambda = 6 \, \mathrm{m} \) | | 11.2 | \( v = 150 \, \mathrm{m/s} \), \( f = 30 \, \mathrm{Hz} \) | \( \lambda = 5 \, \mathrm{m} \) | Feel free to ask if you have any further questions!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the frequency of a wave, you can use the formula \( f = \frac{v}{\lambda} \), where \( f \) represents frequency, \( v \) is the wave speed, and \( \lambda \) is the wavelength. For the first calculation: 10.1 \( f = \frac{200 \, \text{m/s}}{1200 \, \text{m}} = 0.1667 \, \text{Hz} \) (or about 0.17 Hz). 10.2 \( f = \frac{250 \, \text{m/s}}{50 \, \text{m}} = 5 \, \text{Hz} \). To calculate the wavelength of a wave, we can rearrange the same formula to \( \lambda = \frac{v}{f} \). 11.1 \( \lambda = \frac{120 \, \text{m/s}}{20 \, \text{Hz}} = 6 \, \text{m} \). 11.2 \( \lambda = \frac{150 \, \text{m/s}}{30 \, \text{Hz}} = 5 \, \text{m} \). Now, isn't it fascinating how sound waves travel? Whether it's music or a passing car, they all rely on these fundamental principles of physics to propagate through the air! Waves aren’t just confined to sound; they occur in oceans, light, and even on strings of your guitar! Dive into the realm of wave phenomena, and you'll discover harmonics, interference patterns, and Doppler effects that create the rich tapestry of our physical world.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad