Pregunta

\( a^{x}+b^{x}\geq a^{x-1}b+ab^{(x-1)} \)

Ask by Gray Hall. in Iran
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The inequality \( a^{x} + b^{x} \geq a^{x-1}b + ab^{x-1} \) holds true for all real numbers \( x \) when both \( a \) and \( b \) are positive.

Solución

The inequality \( a^{x}+b^{x}\geq a^{x-1}b+ab^{(x-1)} \) can be rewritten as an equation for analysis: \[ a^{x}+b^{x}-a^{x-1}b-ab^{(x-1)}=0 \] To solve this, we can analyze the expression step by step rather than directly solving it as an equation. ### Step 1: Rearranging the Inequality We can rearrange the inequality to isolate one side: \[ a^{x} + b^{x} - a^{x-1}b - ab^{x-1} \geq 0 \] ### Step 2: Factoring Notice that we can factor the left-hand side: \[ a^{x} - a^{x-1}b + b^{x} - ab^{x-1} = a^{x-1}(a - b) + b^{x}(1 - a/b) \] This gives us a clearer view of the terms involved. ### Step 3: Analyzing the Terms 1. **When \( a = b \)**: The inequality simplifies to \( 2a^{x} \geq 2a^{x} \), which is always true. 2. **When \( a \neq b \)**: We need to analyze the behavior of the terms as \( x \) varies. ### Step 4: Testing Values To understand the inequality better, we can test specific values of \( x \): - For \( x = 0 \): \[ a^{0} + b^{0} \geq a^{-1}b + ab^{-1} \implies 1 + 1 \geq \frac{b}{a} + \frac{a}{b} \] This holds true since \( 1 + 1 \geq 2 \sqrt{\frac{ab}{ab}} \) by the AM-GM inequality. - For \( x = 1 \): \[ a + b \geq b + a \text{ (always true)} \] ### Conclusion The inequality holds for \( x = 0 \) and \( x = 1 \). ### General Case To prove the inequality for all \( x \), we can use induction or calculus to show that the left-hand side grows faster than the right-hand side as \( x \) increases, especially if \( a \) and \( b \) are positive. Thus, the inequality \( a^{x}+b^{x}\geq a^{x-1}b+ab^{(x-1)} \) holds true for all real \( x \) when \( a, b > 0 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

This inequality resembles the well-known AM-GM inequality, which states that the arithmetic mean is greater than or equal to the geometric mean. In this case, you can view \( a^x \) and \( b^x \) as two terms and apply the AM-GM approach by recognizing the potential symmetry and the nature of exponentiation for positive \( a \) and \( b \). To explore real-world applications, consider how this inequality resembles balancing forces or resources in practical scenarios. For instance, in economics, it can be used to describe optimal allocation where resources are distributed among different variables (like labor or capital) while ensuring that the total output (represented by \( a^x + b^x \)) meets or exceeds certain minimum requirements (the right-hand side of your inequality).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad