Pregunta
upstudy study bank question image url

Find the area between the curves \( y=x^{2} \) and \( y=x^{3} \) \( 1 / 6 \) \( 1 / 4 \) \( 1 / 12 \) \( 1 / 3 \)

Ask by Malone Davison. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area between the curves \( y = x^2 \) and \( y = x^3 \) is \( \frac{1}{12} \).

Solución

To find the area between the curves \( y = x^2 \) and \( y = x^3 \), follow these steps: 1. **Find the Points of Intersection:** Set \( x^2 = x^3 \): \[ x^2(1 - x) = 0 \] This gives \( x = 0 \) and \( x = 1 \). 2. **Determine Which Curve is on Top:** For \( 0 < x < 1 \): \[ x^2 > x^3 \quad \text{(since \( x \) is positive and less than 1)} \] So, \( y = x^2 \) is above \( y = x^3 \) in this interval. 3. **Set Up the Integral:** The area \( A \) between the curves from \( x = 0 \) to \( x = 1 \) is: \[ A = \int_{0}^{1} (x^2 - x^3) \, dx \] 4. **Evaluate the Integral:** \[ A = \left[ \frac{x^3}{3} - \frac{x^4}{4} \right]_0^1 = \left( \frac{1}{3} - \frac{1}{4} \right) - 0 = \frac{1}{3} - \frac{1}{4} = \frac{4}{12} - \frac{3}{12} = \frac{1}{12} \] **Answer:** \( \frac{1}{12} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the area between the curves \( y = x^2 \) and \( y = x^3 \), you first need to determine the points of intersection. Set \( x^2 = x^3 \), which gives \( x^2 (1 - x) = 0 \). This results in intersection points at \( x = 0 \) and \( x = 1 \). The area between the curves can be found by integrating the difference \( x^2 - x^3 \) from 0 to 1: \[ \text{Area} = \int_{0}^{1} (x^2 - x^3) \, dx = \int_{0}^{1} x^2 \, dx - \int_{0}^{1} x^3 \, dx \] Calculating the integrals: \[ \int_{0}^{1} x^2 \, dx = \left[\frac{x^3}{3}\right]_{0}^{1} = \frac{1}{3} \] \[ \int_{0}^{1} x^3 \, dx = \left[\frac{x^4}{4}\right]_{0}^{1} = \frac{1}{4} \] So the area is: \[ \text{Area} = \frac{1}{3} - \frac{1}{4} = \frac{4}{12} - \frac{3}{12} = \frac{1}{12} \] Thus, the area between the curves is \( \frac{1}{12} \). Expressing calculations in practical scenarios often helps students interpret mathematical operations. Consider finding the area between curves in real life; architects often need to calculate areas for design layouts. Imagine calculating the area of shaded regions on blueprints to optimize materials or space! If you're tackling integration problems like this, it’s vital to carefully set up your limits and check your intersection points. A common mistake is forgetting to subtract the lower curve from the upper curve, which could lead to an incorrect area calculation. Also, when setting up integrals, ensure you’re integrating with respect to the correct variable for clarity.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad