Pregunta
upstudy study bank question image url

\( \left[ \begin{array} { c c c | c } { 3 } & { - 2 } & { 4 } & { - 16 } \\ { 2 } & { 3 } & { - 2 } & { - 5 } \\ { 5 } & { - 1 } & { - 1 } & { - 3 } \end{array} \right] \)

Ask by Wyatt Parsons. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the system of equations is \( x = -2 \), \( y = -3 \), and \( z = -4 \).

Solución

To solve the system of linear equations represented by the augmented matrix: \[ \left[ \begin{array} { c c c | c } 3 & -2 & 4 & -16 \\ 2 & 3 & -2 & -5 \\ 5 & -1 & -1 & -3 \end{array} \right] \] we can use **Gaussian Elimination** to reduce the matrix to row-echelon form and then solve for the variables \( x \), \( y \), and \( z \). ### Step 1: Write the System of Equations The augmented matrix corresponds to the following system: \[ \begin{cases} 3x - 2y + 4z = -16 \quad \text{(Equation 1)} \\ 2x + 3y - 2z = -5 \quad \text{(Equation 2)} \\ 5x - y - z = -3 \quad \text{(Equation 3)} \end{cases} \] ### Step 2: Eliminate \( x \) from Equations 2 and 3 **a. Eliminate \( x \) from Equation 2** To eliminate \( x \) from Equation 2 using Equation 1: - Multiply Equation 1 by \( \frac{2}{3} \): \[ 2x - \frac{4}{3}y + \frac{8}{3}z = -\frac{32}{3} \] - Subtract this result from Equation 2: \[ \begin{align*} (2x + 3y - 2z) - \left(2x - \frac{4}{3}y + \frac{8}{3}z\right) &= -5 - \left(-\frac{32}{3}\right) \\ 0x + \left(3 + \frac{4}{3}\right)y + \left(-2 - \frac{8}{3}\right)z &= \frac{17}{3} \end{align*} \] Simplifying: \[ \frac{13}{3}y - \frac{14}{3}z = \frac{17}{3} \quad \text{(Equation 2')} \] Multiply through by 3 to eliminate fractions: \[ 13y - 14z = 17 \quad \text{(Equation 2')} \] **b. Eliminate \( x \) from Equation 3** To eliminate \( x \) from Equation 3 using Equation 1: - Multiply Equation 1 by \( \frac{5}{3} \): \[ 5x - \frac{10}{3}y + \frac{20}{3}z = -\frac{80}{3} \] - Subtract this result from Equation 3: \[ \begin{align*} (5x - y - z) - \left(5x - \frac{10}{3}y + \frac{20}{3}z\right) &= -3 - \left(-\frac{80}{3}\right) \\ 0x + \left(-1 + \frac{10}{3}\right)y + \left(-1 - \frac{20}{3}\right)z &= \frac{71}{3} \end{align*} \] Simplifying: \[ \frac{7}{3}y - \frac{23}{3}z = \frac{71}{3} \quad \text{(Equation 3')} \] Multiply through by 3 to eliminate fractions: \[ 7y - 23z = 71 \quad \text{(Equation 3')} \] ### Step 3: Solve for \( y \) and \( z \) Now, we have two equations with two variables: \[ \begin{cases} 13y - 14z = 17 \quad \text{(Equation 2')} \\ 7y - 23z = 71 \quad \text{(Equation 3')} \end{cases} \] **a. Eliminate \( y \)** - Multiply Equation 2' by 7: \[ 91y - 98z = 119 \quad \text{(Equation 2'')} \] - Multiply Equation 3' by 13: \[ 91y - 299z = 923 \quad \text{(Equation 3'')} \] - Subtract Equation 2'' from Equation 3'': \[ (91y - 299z) - (91y - 98z) = 923 - 119 \\ -201z = 804 \\ z = -4 \] **b. Solve for \( y \)** Plug \( z = -4 \) into Equation 2': \[ 13y - 14(-4) = 17 \\ 13y + 56 = 17 \\ 13y = -39 \\ y = -3 \] ### Step 4: Solve for \( x \) Use Equation 1 to solve for \( x \): \[ 3x - 2y + 4z = -16 \\ 3x - 2(-3) + 4(-4) = -16 \\ 3x + 6 - 16 = -16 \\ 3x - 10 = -16 \\ 3x = -6 \\ x = -2 \] ### Step 5: Summary of Solutions \[ \begin{cases} x = -2 \\ y = -3 \\ z = -4 \end{cases} \] **Therefore, the solution to the system of equations is:** \[ x = -2,\quad y = -3,\quad z = -4 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the given augmented matrix, you can use the method of row reduction to find the solutions of the corresponding system of linear equations. By performing row operations, you can simplify the matrix until you reach Row Echelon Form or Reduced Row Echelon Form. This method can help you identify if there are unique solutions, infinitely many solutions, or no solution at all. It’s like solving a puzzle, where you rearrange and combine pieces until everything fits perfectly! If you're looking for practice and a deeper understanding, try solving similar systems of equations or exploring concepts like determinants or inverse matrices. There are plenty of online resources, textbooks, and even YouTube channels dedicated to linear algebra that can provide you with additional problems to solve and explanations to enhance your knowledge in an engaging way. Happy learning!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad