Responder
The solution to the system of equations is \( x = -2 \), \( y = -3 \), and \( z = -4 \).
Solución
To solve the system of linear equations represented by the augmented matrix:
\[
\left[ \begin{array} { c c c | c }
3 & -2 & 4 & -16 \\
2 & 3 & -2 & -5 \\
5 & -1 & -1 & -3
\end{array} \right]
\]
we can use **Gaussian Elimination** to reduce the matrix to row-echelon form and then solve for the variables \( x \), \( y \), and \( z \).
### Step 1: Write the System of Equations
The augmented matrix corresponds to the following system:
\[
\begin{cases}
3x - 2y + 4z = -16 \quad \text{(Equation 1)} \\
2x + 3y - 2z = -5 \quad \text{(Equation 2)} \\
5x - y - z = -3 \quad \text{(Equation 3)}
\end{cases}
\]
### Step 2: Eliminate \( x \) from Equations 2 and 3
**a. Eliminate \( x \) from Equation 2**
To eliminate \( x \) from Equation 2 using Equation 1:
- Multiply Equation 1 by \( \frac{2}{3} \):
\[
2x - \frac{4}{3}y + \frac{8}{3}z = -\frac{32}{3}
\]
- Subtract this result from Equation 2:
\[
\begin{align*}
(2x + 3y - 2z) - \left(2x - \frac{4}{3}y + \frac{8}{3}z\right) &= -5 - \left(-\frac{32}{3}\right) \\
0x + \left(3 + \frac{4}{3}\right)y + \left(-2 - \frac{8}{3}\right)z &= \frac{17}{3}
\end{align*}
\]
Simplifying:
\[
\frac{13}{3}y - \frac{14}{3}z = \frac{17}{3} \quad \text{(Equation 2')}
\]
Multiply through by 3 to eliminate fractions:
\[
13y - 14z = 17 \quad \text{(Equation 2')}
\]
**b. Eliminate \( x \) from Equation 3**
To eliminate \( x \) from Equation 3 using Equation 1:
- Multiply Equation 1 by \( \frac{5}{3} \):
\[
5x - \frac{10}{3}y + \frac{20}{3}z = -\frac{80}{3}
\]
- Subtract this result from Equation 3:
\[
\begin{align*}
(5x - y - z) - \left(5x - \frac{10}{3}y + \frac{20}{3}z\right) &= -3 - \left(-\frac{80}{3}\right) \\
0x + \left(-1 + \frac{10}{3}\right)y + \left(-1 - \frac{20}{3}\right)z &= \frac{71}{3}
\end{align*}
\]
Simplifying:
\[
\frac{7}{3}y - \frac{23}{3}z = \frac{71}{3} \quad \text{(Equation 3')}
\]
Multiply through by 3 to eliminate fractions:
\[
7y - 23z = 71 \quad \text{(Equation 3')}
\]
### Step 3: Solve for \( y \) and \( z \)
Now, we have two equations with two variables:
\[
\begin{cases}
13y - 14z = 17 \quad \text{(Equation 2')} \\
7y - 23z = 71 \quad \text{(Equation 3')}
\end{cases}
\]
**a. Eliminate \( y \)**
- Multiply Equation 2' by 7:
\[
91y - 98z = 119 \quad \text{(Equation 2'')}
\]
- Multiply Equation 3' by 13:
\[
91y - 299z = 923 \quad \text{(Equation 3'')}
\]
- Subtract Equation 2'' from Equation 3'':
\[
(91y - 299z) - (91y - 98z) = 923 - 119 \\
-201z = 804 \\
z = -4
\]
**b. Solve for \( y \)**
Plug \( z = -4 \) into Equation 2':
\[
13y - 14(-4) = 17 \\
13y + 56 = 17 \\
13y = -39 \\
y = -3
\]
### Step 4: Solve for \( x \)
Use Equation 1 to solve for \( x \):
\[
3x - 2y + 4z = -16 \\
3x - 2(-3) + 4(-4) = -16 \\
3x + 6 - 16 = -16 \\
3x - 10 = -16 \\
3x = -6 \\
x = -2
\]
### Step 5: Summary of Solutions
\[
\begin{cases}
x = -2 \\
y = -3 \\
z = -4
\end{cases}
\]
**Therefore, the solution to the system of equations is:**
\[
x = -2,\quad y = -3,\quad z = -4
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución