Ising the rational root theorem, list out all possible/candidate rational roots of \( (x)=5 x^{4}-x^{2}-14 x+6 \). Express your answer as integers or as fractions in simplest form. Use ommas to separate.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the possible rational roots of the polynomial \( f(x) = 5x^4 - x^2 - 14x + 6 \) using the Rational Root Theorem, we first identify the constant term (6) and the leading coefficient (5). The candidates for rational roots can be expressed as: \[ \frac{p}{q} \] where \( p \) is a factor of the constant term (6) and \( q \) is a factor of the leading coefficient (5). The factors of 6 are \( \pm 1, \pm 2, \pm 3, \pm 6 \), and the factors of 5 are \( \pm 1, \pm 5 \). Thus, the possible rational roots are: \[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{5}, \pm \frac{2}{5}, \pm \frac{3}{5}, \pm \frac{6}{5} \]