Pregunta
upstudy study bank question image url

Problem 8: Let \( f(x)=3 x^{3}-2 x^{2}+x \) on the interval \( [-1,2] \). . Apply the MVT to find the value(s) of \( c \) in \( (-1,2) \) where \( f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)} \).

Ask by Lane Dawson. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The values of \( c \) in \((-1, 2)\) that satisfy the Mean Value Theorem are \( c = \frac{2 + \sqrt{67}}{9} \) and \( c = \frac{2 - \sqrt{67}}{9} \).

Solución

To apply the Mean Value Theorem (MVT) to the function \( f(x) = 3x^3 - 2x^2 + x \) on the interval \([-1, 2]\), follow these steps: ### **1. Verify the Conditions for MVT** - **Continuity:** \( f(x) \) is a polynomial, so it is continuous on \([-1, 2]\). - **Differentiability:** Since \( f(x) \) is a polynomial, it is differentiable on \((-1, 2)\). ### **2. Apply the Mean Value Theorem** According to the MVT, there exists at least one \( c \) in \((-1, 2)\) such that: \[ f'(c) = \frac{f(2) - f(-1)}{2 - (-1)} \] ### **3. Compute \( f(2) \) and \( f(-1) \)** \[ f(2) = 3(2)^3 - 2(2)^2 + 2 = 24 - 8 + 2 = 18 \] \[ f(-1) = 3(-1)^3 - 2(-1)^2 + (-1) = -3 - 2 - 1 = -6 \] ### **4. Calculate the Average Rate of Change** \[ \frac{f(2) - f(-1)}{2 - (-1)} = \frac{18 - (-6)}{3} = \frac{24}{3} = 8 \] ### **5. Find \( f'(x) \) and Solve for \( c \)** First, find the derivative \( f'(x) \): \[ f'(x) = 9x^2 - 4x + 1 \] Set \( f'(c) = 8 \): \[ 9c^2 - 4c + 1 = 8 \\ 9c^2 - 4c - 7 = 0 \] ### **6. Solve the Quadratic Equation** \[ c = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 9 \cdot (-7)}}{2 \cdot 9} = \frac{4 \pm \sqrt{16 + 252}}{18} = \frac{4 \pm \sqrt{268}}{18} \] Simplify the square root: \[ \sqrt{268} = 2\sqrt{67} \] Thus, \[ c = \frac{4 \pm 2\sqrt{67}}{18} = \frac{2 \pm \sqrt{67}}{9} \] ### **7. Verify \( c \) is in \((-1, 2)\)** Calculate approximate values: \[ \sqrt{67} \approx 8.185 \] \[ c_1 = \frac{2 + 8.185}{9} \approx 1.132 \quad (\text{within } (-1, 2)) \] \[ c_2 = \frac{2 - 8.185}{9} \approx -0.687 \quad (\text{within } (-1, 2)) \] Both values of \( c \) lie within the interval \((-1, 2)\). ### **Final Answer** The values of \( c \) in \((-1, 2)\) satisfying the Mean Value Theorem are: \[ c = \frac{2 + \sqrt{67}}{9} \quad \text{and} \quad c = \frac{2 - \sqrt{67}}{9} \] **Answer:** After simplifying, the values c are (2 ± √67) divided by 9. Thus, c = (2 ± √67)/9

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the values of \( c \) using the Mean Value Theorem (MVT), we begin by calculating \( f(2) \) and \( f(-1) \). First, we evaluate: \[ f(2) = 3(2)^3 - 2(2)^2 + 2 = 3(8) - 2(4) + 2 = 24 - 8 + 2 = 18 \] \[ f(-1) = 3(-1)^3 - 2(-1)^2 + (-1) = 3(-1) - 2(1) - 1 = -3 - 2 - 1 = -6 \] Next, we calculate \( \frac{f(2) - f(-1)}{2 - (-1)} \): \[ \frac{f(2) - f(-1)}{2 - (-1)} = \frac{18 - (-6)}{2 + 1} = \frac{18 + 6}{3} = \frac{24}{3} = 8 \] Now, we need to find \( f'(x) \) and set it equal to 8: \[ f(x) = 3x^3 - 2x^2 + x \] Calculating the derivative: \[ f'(x) = 9x^2 - 4x + 1 \] Setting \( f'(c) = 8 \): \[ 9c^2 - 4c + 1 = 8 \] \[ 9c^2 - 4c - 7 = 0 \] Now, we will use the quadratic formula, \( c = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ c = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(9)(-7)}}{2(9)} = \frac{4 \pm \sqrt{16 + 252}}{18} = \frac{4 \pm \sqrt{268}}{18} = \frac{4 \pm 2\sqrt{67}}{18} = \frac{2 \pm \sqrt{67}}{9} \] Calculating the approximate values of these roots, we find: \[ c_1 = \frac{2 + \sqrt{67}}{9} \quad \text{and} \quad c_2 = \frac{2 - \sqrt{67}}{9} \] Now, evaluating \(\sqrt{67} \approx 8.19\), we calculate: \[ c_1 \approx \frac{2 + 8.19}{9} \approx \frac{10.19}{9} \approx 1.13 \] \[ c_2 \approx \frac{2 - 8.19}{9} \approx \frac{-6.19}{9} \approx -0.69 \] Since \( c \) needs to be in the interval \( (-1,2) \), both \( c_1 \approx 1.13 \) and \( c_2 \approx -0.69 \) are valid solutions. Thus, the values of \( c \) are approximately: \[ c \approx 1.13, -0.69 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad