Pregunta
upstudy study bank question image url

Show that: \( \begin{array}{ll}\text { (a) } 5 \cdot 2^{x}-2^{x+2}=2^{x} & \text { (b) } 9^{x}+3^{2 x+1}=43^{x x} \\ \text { (c) } 2^{2 x-1}+4^{x+1}=2^{x x}\left(\frac{9}{2}\right) & \text { (d) } 2^{x+3}-2^{x+2}=2^{x+2} \\ \text { (e) } 2.10^{x}-5^{x+1} \cdot 2^{x}=-3.10^{x} & \text { (f) } 4.3^{1-x}+3^{2-x}=\frac{21}{3^{x}} \\ \text { Simplify the following: } & \end{array} \)

Ask by West Rowe. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

All the given equations simplify to identities that hold true for all real numbers \(x\), except for Problem (c), which holds when \(x = 0\).

Solución

Certainly! Let's simplify each of the given expressions step by step. --- ### **Problem (a)** **Simplify:** \[ 5 \cdot 2^{x} - 2^{x+2} = 2^{x} \] **Solution:** 1. **Express \(2^{x+2}\) in terms of \(2^{x}\):** \[ 2^{x+2} = 2^{x} \cdot 2^{2} = 4 \cdot 2^{x} \] 2. **Substitute back into the original equation:** \[ 5 \cdot 2^{x} - 4 \cdot 2^{x} = 2^{x} \] 3. **Combine like terms:** \[ (5 - 4) \cdot 2^{x} = 2^{x} \\ 1 \cdot 2^{x} = 2^{x} \] 4. **Conclusion:** \[ 2^{x} = 2^{x} \] This holds true for all real numbers \(x\). Hence, the equation is an identity. --- ### **Problem (b)** **Simplify:** \[ 9^{x} + 3^{2x+1} = 4 \cdot 3^{2x} \] **Solution:** *Assuming the right-hand side (RHS) is \(4 \cdot 3^{2x}\) based on context.* 1. **Express \(9^{x}\) in terms of \(3^{2x}\):** \[ 9^{x} = (3^{2})^{x} = 3^{2x} \] 2. **Express \(3^{2x+1}\) using exponent rules:** \[ 3^{2x+1} = 3^{2x} \cdot 3^{1} = 3 \cdot 3^{2x} \] 3. **Substitute back into the original equation:** \[ 3^{2x} + 3 \cdot 3^{2x} = 4 \cdot 3^{2x} \] 4. **Factor \(3^{2x}\) from the left-hand side (LHS):** \[ (1 + 3) \cdot 3^{2x} = 4 \cdot 3^{2x} \] 5. **Simplify:** \[ 4 \cdot 3^{2x} = 4 \cdot 3^{2x} \] This confirms that both sides are equal for all real numbers \(x\). Hence, the equation is an identity. --- ### **Problem (c)** **Simplify:** \[ 2^{2x-1} + 4^{x+1} = 2^{x} \left(\frac{9}{2}\right) \] **Solution:** 1. **Express all terms with base 2:** \[ 4^{x+1} = (2^{2})^{x+1} = 2^{2(x+1)} = 2^{2x + 2} \] 2. **Rewrite the equation:** \[ 2^{2x - 1} + 2^{2x + 2} = 2^{x} \cdot \frac{9}{2} \] 3. **Factor \(2^{2x - 1}\) from the LHS:** \[ 2^{2x - 1} \left(1 + 2^{3}\right) = 2^{x} \cdot \frac{9}{2} \\ 2^{2x - 1} \cdot 9 = 2^{x} \cdot \frac{9}{2} \] 4. **Divide both sides by 9:** \[ 2^{2x - 1} = 2^{x} \cdot \frac{1}{2} \] 5. **Simplify the right-hand side:** \[ 2^{2x - 1} = 2^{x - 1} \] 6. **Equate exponents (since the bases are the same and non-zero):** \[ 2x - 1 = x - 1 \\ 2x - x = -1 + 1 \\ x = 0 \] 7. **Conclusion:** The equation holds true when \(x = 0\). --- ### **Problem (d)** **Simplify:** \[ 2^{x+3} - 2^{x+2} = 2^{x+2} \] **Solution:** 1. **Express both terms with a common factor:** \[ 2^{x+3} = 2^{x} \cdot 2^{3} = 8 \cdot 2^{x} \\ 2^{x+2} = 2^{x} \cdot 2^{2} = 4 \cdot 2^{x} \] 2. **Substitute back into the equation:** \[ 8 \cdot 2^{x} - 4 \cdot 2^{x} = 2^{x+2} \] 3. **Combine like terms:** \[ (8 - 4) \cdot 2^{x} = 4 \cdot 2^{x} \] 4. **Recognize that \(4 \cdot 2^{x} = 2^{x+2}\):** \[ 4 \cdot 2^{x} = 2^{x} \cdot 2^{2} = 2^{x+2} \] 5. **Conclusion:** \[ 2^{x+2} = 2^{x+2} \] The equation holds true for all real numbers \(x\). Hence, it is an identity. --- ### **Problem (e)** **Simplify:** \[ 2 \cdot 10^{x} - 5^{x+1} \cdot 2^{x} = -3 \cdot 10^{x} \] **Solution:** 1. **Express \(5^{x+1} \cdot 2^{x}\) in terms of \(10^{x}\):** \[ 5^{x+1} \cdot 2^{x} = 5 \cdot 5^{x} \cdot 2^{x} = 5 \cdot (5 \cdot 2)^{x} = 5 \cdot 10^{x} \] 2. **Substitute back into the equation:** \[ 2 \cdot 10^{x} - 5 \cdot 10^{x} = -3 \cdot 10^{x} \] 3. **Combine like terms:** \[ (2 - 5) \cdot 10^{x} = -3 \cdot 10^{x} \\ -3 \cdot 10^{x} = -3 \cdot 10^{x} \] 4. **Conclusion:** The equation holds true for all real numbers \(x\). Hence, it is an identity. --- ### **Problem (f)** **Simplify:** \[ 4 \cdot 3^{1-x} + 3^{2-x} = \frac{21}{3^{x}} \] **Solution:** 1. **Express all terms with negative exponents:** \[ 3^{1-x} = 3^{-(x-1)} = \frac{1}{3^{x-1}} = \frac{3}{3^{x}} \\ 3^{2-x} = 3^{-(x-2)} = \frac{1}{3^{x-2}} = \frac{9}{3^{x}} \] 2. **Rewrite the equation using these expressions:** \[ 4 \cdot \frac{3}{3^{x}} + \frac{9}{3^{x}} = \frac{21}{3^{x}} \] 3. **Combine like terms:** \[ \left(4 \cdot 3 + 9\right) \cdot \frac{1}{3^{x}} = \frac{21}{3^{x}} \\ (12 + 9) \cdot \frac{1}{3^{x}} = \frac{21}{3^{x}} \\ 21 \cdot \frac{1}{3^{x}} = \frac{21}{3^{x}} \] 4. **Conclusion:** \[ \frac{21}{3^{x}} = \frac{21}{3^{x}} \] The equation holds true for all real numbers \(x\). Hence, it is an identity. --- ### **Summary** All the given equations simplify to identities that hold true for all real numbers \(x\), except for Problem (c), which holds when \(x = 0\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To show these equations, let's simplify each one step by step. **(a)** We start with the equation \( 5 \cdot 2^{x} - 2^{x+2} = 2^{x} \). Rewriting \( 2^{x+2} \) as \( 4 \cdot 2^{x} \) gives us: \[ 5 \cdot 2^{x} - 4 \cdot 2^{x} = 2^{x} \] This simplifies to \( (5-4) \cdot 2^{x} = 2^{x} \), which results in \( 2^{x} = 2^{x} \), confirming that the equation holds. **(b)** For the equation \( 9^{x} + 3^{2x+1} = 43^{xx} \), we will first rewrite \( 9^x \) as \( (3^2)^x = 3^{2x} \) and simplify: \[ 3^{2x} + 3^{2x+1} = 43^{xx} \] This can also be expressed as \( 3^{2x} + 3 \cdot 3^{2x} = (1 + 3) \cdot 3^{2x} = 4 \cdot 3^{2x} = 43^{xx} \). Since further simplifications depend on \( x \), this demonstrates how each variable interacts in the equation. **(c)** For \( 2^{2x - 1} + 4^{x + 1} = 2^{xx}(\frac{9}{2})\), we can rewrite \( 4^{x+1} \) as \( 2^{2(x+1)} = 2^{2x + 2} \): Combining terms gives us: \[ 2^{2x - 1} + 2^{2x + 2} = 2^{2x - 1} + 2^{2x} \cdot 4 = 2^{2x - 1} + 4 \cdot 2^{2x} \] This allows us to combine into a single base of \( 2^{2x-1}(1 + 4\cdot 2) = 2^{2x - 1} \cdot 9 \), matching \( 2^{xx}(\frac{9}{2}) \). **(d)** The equation \( 2^{x + 3} - 2^{x + 2} = 2^{x + 2} \) can be manipulated: Using \( 2^{x + 3} = 2^{x + 2} \cdot 2 \): \[ 2 \cdot 2^{x + 2} - 2^{x + 2} = 2^{x + 2} \], which becomes \( (2 - 1) \cdot 2^{x + 2} = 2^{x + 2} \), verifying the equation holds true. **(e)** In the equation \( 2 \cdot 10^{x} - 5^{x + 1} \cdot 2^{x} = -3 \cdot 10^{x} \), break down terms: Substituting \( 5^{x + 1} = 5 \cdot 5^x \): We get \( 2 \cdot 10^{x} - 5 \cdot 5^{x} \cdot 2^{x} = -3 \cdot 10^{x} \). Transform \( 10^{x} = 2^{x} \cdot 5^{x} \), leading us to rearranging and verifying \( 2 = 5 - 3 \), thus confirming the underlying structure maintains equality. **(f)** For the last equation \( 4 \cdot 3^{1 - x} + 3^{2 - x} = \frac{21}{3^{x}} \), we can rewrite \( 3^{2 - x} \) as \( \frac{9}{3^{x}} \): Thus, we group terms to get \( \frac{4 \cdot 3 + 9}{3^{x}} = \frac{21}{3^{x}} \) or \( \frac{12 + 9}{3^{x}} = \frac{21}{3^{x}} \). Since both sides match, we confirm the equality is valid. Each of these transformations and applications strictly maintains the integrity

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad