Pregunta
upstudy study bank question image url

Solve the initial value problem using partial fractions. Use a graphing uttity to generate a slope field for the differential equation and verify that the solution conforms to the slope field. \( \frac{d P}{d t}=.006 P(600-P) \) and \( P=14 \) when \( t=0 \). \( P=14 \)

Ask by Martinez Boone. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the differential equation is \( P(t) = \frac{4200 e^{3.6 t}}{293 + 7 e^{3.6 t}} \). To verify, plot this function and compare it with the slope field generated by a graphing utility; the solution should align with the direction indicated by the slope field, confirming its validity.

Solución

To solve the initial value problem: \[ \frac{dP}{dt} = 0.006 P (600 - P), \quad P(0) = 14 \] we will use the method of **separation of variables** along with **partial fractions**. After finding the explicit solution, we'll discuss how to verify it using a slope field generated by a graphing utility. ### Step 1: Separate Variables Start by separating the variables \( P \) and \( t \): \[ \frac{dP}{P(600 - P)} = 0.006 \, dt \] ### Step 2: Apply Partial Fractions To integrate the left-hand side, decompose the fraction using partial fractions: \[ \frac{1}{P(600 - P)} = \frac{A}{P} + \frac{B}{600 - P} \] Multiply both sides by \( P(600 - P) \): \[ 1 = A(600 - P) + B P \] To find constants \( A \) and \( B \): 1. Let \( P = 0 \): \[ 1 = A(600) \implies A = \frac{1}{600} \] 2. Let \( P = 600 \): \[ 1 = B(600) \implies B = \frac{1}{600} \] Thus: \[ \frac{1}{P(600 - P)} = \frac{1}{600} \left( \frac{1}{P} + \frac{1}{600 - P} \right) \] ### Step 3: Integrate Both Sides Integrate the separated equation: \[ \int \frac{1}{P(600 - P)} \, dP = \int 0.006 \, dt \] Substitute the partial fractions: \[ \frac{1}{600} \int \left( \frac{1}{P} + \frac{1}{600 - P} \right) dP = 0.006 \int dt \] Integrate: \[ \frac{1}{600} \left( \ln|P| - \ln|600 - P| \right) = 0.006 t + C \] Multiply both sides by 600: \[ \ln\left(\frac{P}{600 - P}\right) = 3.6 t + C' \] where \( C' = 600C \) is a new constant. ### Step 4: Solve for \( P(t) \) Exponentiate both sides to eliminate the natural logarithm: \[ \frac{P}{600 - P} = Ce^{3.6 t} \] where \( C = e^{C'} \). Solve for \( P \): \[ P = \frac{600 C e^{3.6 t}}{1 + C e^{3.6 t}} \] ### Step 5: Apply Initial Condition Use the initial condition \( P(0) = 14 \) to find \( C \): \[ 14 = \frac{600 C}{1 + C} \implies 14(1 + C) = 600C \implies 14 + 14C = 600C \] \[ 14 = 586C \implies C = \frac{14}{586} = \frac{7}{293} \] ### Step 6: Write the Explicit Solution Substitute \( C = \frac{7}{293} \) back into the equation for \( P(t) \): \[ P(t) = \frac{600 \cdot \frac{7}{293} e^{3.6 t}}{1 + \frac{7}{293} e^{3.6 t}} = \frac{4200 e^{3.6 t}}{293 + 7 e^{3.6 t}} \] Thus, the explicit solution is: \[ P(t) = \frac{4200 e^{3.6 t}}{293 + 7 e^{3.6 t}} \] Alternatively, it can be expressed as: \[ P(t) = \frac{600}{1 + \left(\frac{293}{7}\right) e^{-3.6 t}} \] ### Step 7: Verifying with a Slope Field To verify that the solution conforms to the slope field, follow these steps using a graphing utility (e.g., Desmos, GeoGebra, or a graphing calculator): 1. **Generate the Slope Field:** - Input the differential equation \( \frac{dP}{dt} = 0.006 P (600 - P) \) into the slope field generator. - The slope field visually represents the direction of \( dP/dt \) at various points \( (t, P) \). 2. **Plot the Solution Curve:** - Use the explicit solution \( P(t) = \frac{4200 e^{3.6 t}}{293 + 7 e^{3.6 t}} \) to plot \( P \) versus \( t \). - Alternatively, use the logistic function form \( P(t) = \frac{600}{1 + \left(\frac{293}{7}\right) e^{-3.6 t}} \). 3. **Verification:** - Observe that the solution curve aligns smoothly with the direction indicated by the slope field at all points. - The initial condition \( P(0) = 14 \) should lie on both the solution curve and the slope field. - As \( t \) increases, \( P(t) \) approaches the carrying capacity \( 600 \), which should coincide with horizontal slopes in the slope field as \( P \) nears \( 600 \). ### Example Using Desmos Here's how you can perform the verification using Desmos: 1. **Access Desmos:** - Go to [Desmos Graphing Calculator](https://www.desmos.com/calculator). 2. **Input the Slope Field:** - Unfortunately, Desmos doesn't have a built-in slope field feature, but you can approximate it by plotting many small line segments with slopes given by the differential equation. - Alternatively, use a dedicated slope field tool or software like GeoGebra. 3. **Plot the Solution:** - Enter the explicit solution formula: \[ P(t) = \frac{4200 e^{3.6 t}}{293 + 7 e^{3.6 t}} \] - In Desmos, type: ``` P(t) = 4200 * e^(3.6t) / (293 + 7 * e^(3.6t)) ``` - Plot this function to see the logistic growth curve. 4. **Compare with the Slope Field:** - If using separate software for the slope field, overlay or compare the solution curve with the slope field. - The curve should follow the directions indicated by the slope field, confirming that it is indeed a solution to the differential equation. ### Conclusion The solution to the initial value problem is: \[ P(t) = \frac{4200 e^{3.6 t}}{293 + 7 e^{3.6 t}} \quad \text{or} \quad P(t) = \frac{600}{1 + \left(\frac{293}{7}\right) e^{-3.6 t}} \] By generating and comparing this solution with the slope field using a graphing utility, you can visually verify that the solution conforms to the behavior dictated by the differential equation.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the initial value problem \( \frac{dP}{dt} = 0.006 P(600 - P) \) with the initial condition \( P(0) = 14 \), we start by rewriting the equation in separable form: \[ \frac{1}{P(600 - P)} dP = 0.006 dt \] Next, we apply partial fractions: \[ \frac{1}{P(600 - P)} = \frac{A}{P} + \frac{B}{600 - P} \] Finding \( A \) and \( B \) gives \( A = \frac{1}{600} \) and \( B = \frac{1}{600} \), leading to: \[ \frac{1}{600} \left( \frac{1}{P} + \frac{1}{600 - P} \right) dP = 0.006 dt \] Integrating both sides results in: \[ \frac{1}{600} (\ln |P| - \ln |600 - P|) = 0.006t + C \] Exponentiating and simplifying yields the logistic equation: \[ \frac{P}{600 - P} = e^{0.006t + C_1} \] Setting \( P(0) = 14 \) will help find \( C_1 \). Solving this provides \( P(t) \), which can be graphed alongside the slope field generated from the differential equation. The graphing utility will show that the solutions follow the trend of the slope field, confirming the consistency of the solution. This equation is reminiscent of the classic logistic growth model used in biological scenarios, like population dynamics, demonstrating how initially sparse populations can reach carrying capacities optimally. Now, for some problem-solving tips: Always ensure your separation is accurate to avoid losing potential solutions, and watch that your limits of integration appropriately reflect the initial conditions you've been given to achieve the right constant.

preguntas relacionadas

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad