or the function \( f(x)=\left(\frac{x}{5}\right)^{\frac{1}{6}} \), find \( f^{-1}(x) \) Answer \( \begin{array}{ll}f^{-1}(x)=5 x^{5} & f^{-1}(x)=(5 x)^{5} \\ f^{-1}(x)=\frac{x^{5}}{5} & f^{-1}(x)=5 x^{\frac{1}{5}}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the inverse function \( f^{-1}(x) \) for \( f(x)=\left(\frac{x}{5}\right)^{\frac{1}{6}} \), we start with \( y = f(x) \), which gives us: \[ y = \left(\frac{x}{5}\right)^{\frac{1}{6}}. \] To isolate \( x \), we raise both sides to the power of 6: \[ y^6 = \frac{x}{5}. \] Then, we multiply both sides by 5: \[ x = 5y^6. \] Now, substituting \( y \) back with \( x \) to express the inverse function gives us: \[ f^{-1}(x) = 5x^6. \] So, the final answer is: \[ f^{-1}(x) = 5x^6. \] For the diverse interpretations you provided, none match the correct inverse function we've derived. Always check the order of operations when dealing with functions and their inverses to avoid common pitfalls in isolating variables!