Pregunta
upstudy study bank question image url

A customer paid a total of \( \$ 6.00 \) for 68 copies at a print shop. Some of the copies were black-and-white copies, and the rest were color copies. - Each black-and-white copy cost \( \$ 0.08 \). (1) - Each color copy cost \( \$ 0.15 \). Which system of equations can be used to find \( b \), the number of black-and-white copies, and \( c \), the number of color copies that the customer paid for at the print shop? (c) A. \( b+c=6.00 \) \( 0.08 b+0.15 c=68 \) B. \( b+c=68 \) \( 0.15 b+0.08 c=6.00 \) C. \( b+c=6.00 \) \[ 0.15 b+0.08 c=68 \] D. \[ \begin{array}{l} b+c=68 \\ 0.08 b+0.15 c=6.00 \end{array} \]

Ask by Nguyen Fitzgerald. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct system of equations is: \[ \begin{cases} b + c = 68 \\ 0.08b + 0.15c = 6.00 \end{cases} \] So, the answer is **D**.

Solución

To determine the correct system of equations for the given problem, let's break down the information provided: 1. **Total Copies:** - The customer bought a total of \( 68 \) copies. - Let \( b \) represent the number of black-and-white copies. - Let \( c \) represent the number of color copies. Therefore, the first equation is: \[ b + c = 68 \] 2. **Total Cost:** - Each black-and-white copy costs \( \$0.08 \). - Each color copy costs \( \$0.15 \). - The total cost paid by the customer is \( \$6.00 \). This gives us the second equation: \[ 0.08b + 0.15c = 6.00 \] Putting these two equations together, the correct system of equations is: \[ \begin{cases} b + c = 68 \\ 0.08b + 0.15c = 6.00 \end{cases} \] Looking at the provided options, **Option D** accurately represents this system of equations. **Answer:** **D.** \[ \begin{array}{l} b+c=68 \\ 0.08 b+0.15 c=6.00 \end{array} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this problem, let's take a look at the equations we need. The total number of copies is 68, so one part of our system must reflect that relationship: \( b + c = 68 \). The total cost is $6.00, where black-and-white copies cost $0.08 each and color copies $0.15 each. This gives us the second equation: \( 0.08b + 0.15c = 6.00 \). So, the correct option is D: \[ \begin{array}{l} b+c=68 \\ 0.08 b+0.15 c=6.00 \end{array} \] We need those equations to pin down the exact quantities of black-and-white and color copies. Now, when solving problems like this, one common mistake is to confuse total counts with total costs. Remember to clearly differentiate the elements like counts of copies versus their total price, or you might end up with mixed numbers that just don’t make sense, creating further confusion in your solving process! It’s like trying to mix apples and oranges—just doesn’t work! If you're looking to delve deeper into similar equations and systems, consider checking out resources on linear algebra or systems of equations. They not only help in academic settings but are also useful in everyday calculations like budgeting, planning purchases, or even understanding more complex data relationships. You can easily find online sources or textbooks that cater to all learning levels!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad