Pregunta
1. \( 4 x \) \( 6 x^{3}+4 x \) \( 2 x^{2}+2 \) \( 12 x^{3}+8 x \) \( 3 x^{2}+2 \) \( 8 x \) Mrs. Gutierrez placed an expression on the board and asked students to set up the division problem and determine the quotient. \[ \left(12 x^{3}+8 x\right) \div 4 x \] Complete the statement about the expression. You may not use all the options. In the expression, the divisor is \( \square \) , the quotient is \( \square \) , and the dividend is \( \square \) ? (c) 2025 Renaissance Learning, Inc. All Rights Reserve
Ask by Gordon Lowe. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
In the expression, the divisor is \(4x\), the quotient is \(3x^{2} + 2\), and the dividend is \(12x^{3} + 8x\).
Solución
To analyze the division problem:
\[
\left(12 x^{3}+8 x\right) \div 4 x
\]
We need to identify the **divisor**, **quotient**, and **dividend** from the given options.
1. **Dividend**: This is the expression being divided.
- **Dividend**: \(12 x^{3} + 8 x\)
2. **Divisor**: This is the expression by which the dividend is divided.
- **Divisor**: \(4 x\)
3. **Quotient**: This is the result of the division.
- **Quotient**: \(3 x^{2} + 2\)
Putting it all together:
- **Divisor**: \(4 x\)
- **Quotient**: \(3 x^{2} + 2\)
- **Dividend**: \(12 x^{3} + 8 x\)
**Complete Statement:**
In the expression, the divisor is \(4 x\), the quotient is \(3 x^{2} + 2\), and the dividend is \(12 x^{3} + 8 x\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
In the expression, the divisor is \( 4 x \), the quotient is \( 3 x^{2} + 2 \), and the dividend is \( 12 x^{3} + 8 x \). When solving this division problem, we see that \( 12 x^{3} + 8 x \) is being divided by \( 4 x \). By applying polynomial long division or simplifying, we find that the result is indeed \( 3 x^{2} + 2 \), which is what Mrs. Gutierrez wanted her students to calculate.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium