Compute for \( f(x)=\frac{1}{x} \) Homework Help \( \begin{array}{lll}\text { a. } f\left(\frac{1}{2}\right) & \text { b. } f\left(\frac{1}{10}\right) & \text { c. } f(0.01) \\ \text { Solve each of the following quadratic equations. If you need help, refer to the Math Notes box for this lesson. Homework Help } \\ \begin{array}{ll}\text { a. } x^{2}-8 x+15=0 & \text { b. } 2 x^{2}-5 x-6=0\end{array}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find \( f(x) = \frac{1}{x} \): - a. \( f\left(\frac{1}{2}\right) = \frac{1}{\frac{1}{2}} = 2 \) - b. \( f\left(\frac{1}{10}\right) = \frac{1}{\frac{1}{10}} = 10 \) - c. \( f(0.01) = \frac{1}{0.01} = 100 \) Now, let's solve those quadratic equations: For \( x^{2}-8x+15=0 \), you can factor it as \( (x-3)(x-5)=0 \), giving \( x=3 \) and \( x=5 \). For \( 2x^{2}-5x-6=0 \), you can apply the quadratic formula or factor. This factors to \( (2x+3)(x-2)=0 \), giving the roots \( x=-\frac{3}{2} \) and \( x=2 \).