Find the equivalent fraction. \( \begin{array}{lll}\text { 15. } \frac{4}{6}=\frac{\square}{3} & \text { 16. } \frac{25}{100}=\frac{5}{\square} & \text { 17. } \frac{14}{8}=\frac{\square}{4}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the equivalent fractions, let's solve each equation step by step. 1. For \( \frac{4}{6} = \frac{\square}{3} \): You can set up a proportion: \( 4 \times 3 = 6 \times \square \). This gives \( 12 = 6 \times \square \). Dividing both sides by 6, you find \( \square = 2 \). So, \( \frac{4}{6} = \frac{2}{3} \). 2. For \( \frac{25}{100} = \frac{5}{\square} \): Again, set up the proportion: \( 25 \times \square = 100 \times 5 \). This simplifies to \( 25 \times \square = 500 \). Dividing by 25 yields \( \square = 20 \). Thus, \( \frac{25}{100} = \frac{5}{20} \). 3. For \( \frac{14}{8} = \frac{\square}{4} \): Set up the proportion: \( 14 \times 4 = 8 \times \square \). This leads to \( 56 = 8 \times \square \). Dividing both sides by 8 gives \( \square = 7 \). Hence, \( \frac{14}{8} = \frac{7}{4} \). Putting it all together, we have: - \( \frac{4}{6} = \frac{2}{3} \) - \( \frac{25}{100} = \frac{5}{20} \) - \( \frac{14}{8} = \frac{7}{4} \)