Pregunta
upstudy study bank question image url

(c) Given \( f(x)=-\sqrt{x} \). (1) Write down the domain and range of \( f \). (2) Write down the equation of \( f^{-1} \). (3) Sketch the graphs of \( f \) and \( f^{-1} \) on the same set of axes. (4) Determine the equation of (i) \( \quad g \), the reflection of \( f \) in the \( x \)-axis. (ii) \( \quad h \), the reflection of \( f \) in the \( y \)-axis. (d) The sketch alongside shows the graph of \( f(x)=a x^{2} \), with a restriction on its domain, and the graph of \( f^{-1} \). \( f \) passes through the point \( (\sqrt{2} ; 4) \). P is the point of intersection of \( f \) and \( f^{-1} \). (1) Write down the domain of \( f \). (2) Determine the value of \( a \). (3) Calculate the coordinates of P . (4) For which values of \( x \) is \( f(x)>f^{-1}(x) \) ?

Ask by Zimmerman Sullivan. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part (c):** 1. **Domain and Range of \( f(x) = -\sqrt{x} \):** - *Domain:* \( x \geq 0 \) - *Range:* \( y \leq 0 \) 2. **Inverse Function \( f^{-1} \):** - \( f^{-1}(x) = x^2 \) with domain \( x \leq 0 \) and range \( y \geq 0 \) 3. **Graphs of \( f \) and \( f^{-1} \):** - \( f(x) = -\sqrt{x} \) is a reflection of \( \sqrt{x} \) across the x-axis. - \( f^{-1}(x) = x^2 \) is a parabola opening upwards. - Both graphs intersect at the origin (0,0). 4. **Reflections:** - **(i) Reflection in the x-axis (\( g \)):** \[ g(x) = \sqrt{x} \] - **(ii) Reflection in the y-axis (\( h \)):** \[ h(x) = -\sqrt{-x} \] with domain \( x \leq 0 \) **Part (d):** 1. **Domain of \( f(x) = a x^{2} \):** - All real numbers, \( x \in \mathbb{R} \) 2. **Determining the Value of \( a \):** - Given \( f(\sqrt{2}) = 4 \): \[ 4 = a (\sqrt{2})^2 \implies a = 2 \] - Therefore, \( f(x) = 2x^2 \) 3. **Coordinates of Point \( P \):** - Intersection points are \( (0, 0) \) and \( \left(\frac{1}{2}, \frac{1}{2}\right) \) 4. **Values of \( x \) where \( f(x) > f^{-1}(x) \):** - \( f(x) > f^{-1}(x) \) for \( x > \frac{1}{2} \)

Solución

Alright, I need to tackle this multi-part problem involving functions, their inverses, reflections, and domain/range determinations. Let's break it down step by step to ensure I cover all aspects thoroughly. **Part (c):** 1. **Domain and Range of \( f(x) = -\sqrt{x} \):** - The square root function \( \sqrt{x} \) is defined for \( x \geq 0 \). Therefore, the domain of \( f(x) \) is \( x \geq 0 \). - The range of \( \sqrt{x} \) is \( y \geq 0 \). Since \( f(x) = -\sqrt{x} \), the range becomes \( y \leq 0 \). 2. **Inverse Function \( f^{-1} \):** - To find the inverse, I'll swap \( x \) and \( y \) and solve for \( y \): \[ x = -\sqrt{y} \implies \sqrt{y} = -x \implies y = x^2 \] - However, since \( \sqrt{y} \) is always non-negative, \( x \) must be non-positive. Therefore, the domain of \( f^{-1} \) is \( x \leq 0 \), and the range is \( y \geq 0 \). 3. **Graphs of \( f \) and \( f^{-1} \):** - \( f(x) = -\sqrt{x} \) is a reflection of \( \sqrt{x} \) across the x-axis. - \( f^{-1}(x) = x^2 \) is a parabola opening upwards. - Both graphs will intersect at the origin (0,0). 4. **Reflections:** - **(i) Reflection in the x-axis (\( g \)):** - Reflecting \( f(x) \) across the x-axis changes the sign of the output: \[ g(x) = -f(x) = \sqrt{x} \] - **(ii) Reflection in the y-axis (\( h \)):** - Reflecting \( f(x) \) across the y-axis changes the sign of the input: \[ h(x) = f(-x) = -\sqrt{-x} \] - However, \( \sqrt{-x} \) is only defined for \( x \leq 0 \), so the domain of \( h \) is \( x \leq 0 \). **Part (d):** 1. **Domain of \( f(x) = a x^{2} \):** - The domain of a quadratic function is all real numbers, \( x \in \mathbb{R} \). 2. **Determining the Value of \( a \):** - Given that \( f \) passes through the point \( (\sqrt{2}, 4) \): \[ 4 = a (\sqrt{2})^2 \implies 4 = a \times 2 \implies a = 2 \] - Therefore, \( f(x) = 2x^2 \). 3. **Coordinates of Point \( P \):** - Point \( P \) is the intersection of \( f(x) \) and \( f^{-1}(x) \). - Since \( f(x) = 2x^2 \), its inverse \( f^{-1}(x) = \sqrt{\frac{x}{2}} \). - Setting \( f(x) = f^{-1}(x) \): \[ 2x^2 = \sqrt{\frac{x}{2}} \implies 4x^4 = \frac{x}{2} \implies 8x^4 = x \implies x(8x^3 - 1) = 0 \] - Solutions: \( x = 0 \) or \( x = \frac{1}{2} \). - For \( x = 0 \): \[ f(0) = 0 \quad \text{and} \quad f^{-1}(0) = 0 \] - For \( x = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^2 = \frac{1}{2} \quad \text{and} \quad f^{-1}\left(\frac{1}{2}\right) = \sqrt{\frac{\frac{1}{2}}{2}} = \frac{1}{2} \] - Therefore, the points of intersection are \( (0, 0) \) and \( \left(\frac{1}{2}, \frac{1}{2}\right) \). 4. **Values of \( x \) where \( f(x) > f^{-1}(x) \):** - From the intersection points, \( f(x) > f^{-1}(x) \) when \( x > \frac{1}{2} \). - Therefore, \( f(x) > f^{-1}(x) \) for \( x > \frac{1}{2} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The domain of \( f(x) = -\sqrt{x} \) is \( x \geq 0 \), since the square root function is defined for non-negative values. The range of \( f \) is \( y \leq 0 \) because the square root yields non-negative results, and the negative sign flips these values below the x-axis. To find the inverse \( f^{-1}(y) \), we start from \( y = -\sqrt{x} \). By solving for \( x \), we obtain \( x = -y^2 \), valid for \( y \leq 0 \). So, the equation for \( f^{-1} \) is \( f^{-1}(y) = -y^2 \). For the reflections, the reflection of \( f \) in the \( x \)-axis will give \( g(x) = \sqrt{x} \) and reflecting in the \( y \)-axis gives \( h(x) = -\sqrt{-x} \), defined for \( x \leq 0 \). Moving to \( (d) \), the function \( f(x) = a x^2 \) passing through \( (\sqrt{2}, 4) \) means we can plug in to find \( a \): \[ 4 = a (\sqrt{2})^2 \Rightarrow 4 = 2a \Rightarrow a = 2. \] The coordinates of \( P \), the intersection, must satisfy \( f(x) = f^{-1}(x) \): \[ 2x^2 = x \Rightarrow 0 = 2x^2 - x \Rightarrow x(2x - 1) = 0 \Rightarrow x = 0 \text{ or } x = \frac{1}{2}. \] At \( x = 0 \), \( f(0) = f^{-1}(0) = 0 \). At \( x = \frac{1}{2} \), \( f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^2 = \frac{1}{2} \) and matches with the inverse. Finally, to find where \( f(x) > f^{-1}(x) \), we analyze \( 2x^2 > x \): \[ 2x^2 - x > 0 \Rightarrow x(2x - 1) > 0. \] This means \( x < 0 \) or \( x > \frac{1}{2} \). So, \( P \) is \( (0, 0) \), and \( f(x) > f^{-1}(x) \) for \( x < 0 \) or \( x > \frac{1}{2} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad