(c) Given \( f(x)=-\sqrt{x} \). (1) Write down the domain and range of \( f \). (2) Write down the equation of \( f^{-1} \). (3) Sketch the graphs of \( f \) and \( f^{-1} \) on the same set of axes. (4) Determine the equation of (i) \( \quad g \), the reflection of \( f \) in the \( x \)-axis. (ii) \( \quad h \), the reflection of \( f \) in the \( y \)-axis. (d) The sketch alongside shows the graph of \( f(x)=a x^{2} \), with a restriction on its domain, and the graph of \( f^{-1} \). \( f \) passes through the point \( (\sqrt{2} ; 4) \). P is the point of intersection of \( f \) and \( f^{-1} \). (1) Write down the domain of \( f \). (2) Determine the value of \( a \). (3) Calculate the coordinates of P . (4) For which values of \( x \) is \( f(x)>f^{-1}(x) \) ?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
The domain of \( f(x) = -\sqrt{x} \) is \( x \geq 0 \), since the square root function is defined for non-negative values. The range of \( f \) is \( y \leq 0 \) because the square root yields non-negative results, and the negative sign flips these values below the x-axis. To find the inverse \( f^{-1}(y) \), we start from \( y = -\sqrt{x} \). By solving for \( x \), we obtain \( x = -y^2 \), valid for \( y \leq 0 \). So, the equation for \( f^{-1} \) is \( f^{-1}(y) = -y^2 \). For the reflections, the reflection of \( f \) in the \( x \)-axis will give \( g(x) = \sqrt{x} \) and reflecting in the \( y \)-axis gives \( h(x) = -\sqrt{-x} \), defined for \( x \leq 0 \). Moving to \( (d) \), the function \( f(x) = a x^2 \) passing through \( (\sqrt{2}, 4) \) means we can plug in to find \( a \): \[ 4 = a (\sqrt{2})^2 \Rightarrow 4 = 2a \Rightarrow a = 2. \] The coordinates of \( P \), the intersection, must satisfy \( f(x) = f^{-1}(x) \): \[ 2x^2 = x \Rightarrow 0 = 2x^2 - x \Rightarrow x(2x - 1) = 0 \Rightarrow x = 0 \text{ or } x = \frac{1}{2}. \] At \( x = 0 \), \( f(0) = f^{-1}(0) = 0 \). At \( x = \frac{1}{2} \), \( f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^2 = \frac{1}{2} \) and matches with the inverse. Finally, to find where \( f(x) > f^{-1}(x) \), we analyze \( 2x^2 > x \): \[ 2x^2 - x > 0 \Rightarrow x(2x - 1) > 0. \] This means \( x < 0 \) or \( x > \frac{1}{2} \). So, \( P \) is \( (0, 0) \), and \( f(x) > f^{-1}(x) \) for \( x < 0 \) or \( x > \frac{1}{2} \).