Pregunta
upstudy study bank question image url

Question Define \( Q \) as the region bounded on the right by the graph of \( f(y)=\frac{3}{y} \) and on the left by the \( y \)-axis for \( y \in[1,3] \). Find the volume of the solid of revolution formed by revolving \( Q \) around the \( x \)-axis. - Enter an exact value in terms of \( \pi \).

Ask by Collins Kelly. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid of revolution is \( 6\pi \) cubic units.

Solución

To find the volume of the solid of revolution formed by revolving the region \( Q \) around the \( x \)-axis, we can use the method of disks. The volume of the solid of revolution is given by the formula: \[ V = \pi \int_{a}^{b} [f(y)]^2 \, dy \] In this case, the function \( f(y) = \frac{3}{y} \) and the region \( Q \) is bounded on the right by the graph of \( f(y) \) and on the left by the \( y \)-axis for \( y \in [1,3] \). Substitute \( f(y) = \frac{3}{y} \) into the formula: \[ V = \pi \int_{1}^{3} \left(\frac{3}{y}\right)^2 \, dy \] Now, we can calculate the integral to find the volume of the solid of revolution. Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\pi \times \int_{1}^{3} \left(\frac{3}{y}\right)^{2} dy\) - step1: Evaluate the integral: \(\pi \times 6\) - step2: Reorder the terms: \(6\pi \) The volume of the solid of revolution formed by revolving the region \( Q \) around the \( x \)-axis is \( 6\pi \) cubic units.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the volume of the solid of revolution formed by revolving the region \( Q \) around the \( x \)-axis, we will use the disk method. The volume \( V \) is given by the integral: \[ V = \pi \int_{y_1}^{y_2} [f(y)]^2 \, dy \] In this case, \( f(y) = \frac{3}{y} \), and the boundaries are \( y_1 = 1 \) and \( y_2 = 3 \). Thus, we set up the integral as follows: \[ V = \pi \int_{1}^{3} \left( \frac{3}{y} \right)^2 \, dy \] Calculating \( \left( \frac{3}{y} \right)^2 \): \[ \left( \frac{3}{y} \right)^2 = \frac{9}{y^2} \] Now, we can write the volume integral: \[ V = \pi \int_{1}^{3} \frac{9}{y^2} \, dy \] Next, we calculate the integral: \[ V = \pi \cdot 9 \int_{1}^{3} y^{-2} \, dy \] The integral of \( y^{-2} \) is: \[ \int y^{-2} \, dy = -\frac{1}{y} \] Evaluating the definite integral from \( 1 \) to \( 3 \): \[ = -\frac{1}{3} - (-\frac{1}{1}) = -\frac{1}{3} + 1 = \frac{2}{3} \] Now substituting back into the volume formula: \[ V = \pi \cdot 9 \cdot \frac{2}{3} = \pi \cdot 6 = 6\pi \] Hence, the volume of the solid of revolution is: \[ \boxed{6\pi} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad