Pregunta
upstudy study bank question image url

Find the \( x \)-intercepts and \( y \)-intercept of the following function. \[ f(x)=(x-4)(x+1)(x+3) \] Select the correct answer below: \( x \)-intercepts: \( (3,0),(1,0) \), and \( (-4,0) \cdot y \)-intercept: \( (0,0) \) \( x \)-intercepts: \( (3,0),(1,0) \), and \( (-4,0) \cdot y \)-intercept: \( (0,12) \) \( x \)-intercepts: \( (-3,0),(-1,0) \), and \( (4,0) \cdot y \)-intercept: \( (0,12) \) \( x \)-intercepts: \( (-3,0),(-1,0) \), and \( (4,0) \cdot y \)-intercept: \( (0,0) \) \( x \)-intercepts: \( (-3,0),(-1,0) \), and \( (4,0) \cdot y \)-intercept: \( (0,-12) \) \( x \)-intercepts: \( (3,0),(1,0) \), and \( (-4,0) \cdot y \)-intercept: \( (0,-12) \)

Ask by Pollard Barrett. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The \( x \)-intercepts are \( (-3, 0) \), \( (-1, 0) \), and \( (4, 0) \), and the \( y \)-intercept is \( (0, -12) \).

Solución

To find the \( x \)-intercepts and the \( y \)-intercept of the function \( f(x) = (x - 4)(x + 1)(x + 3) \), let's proceed step by step. ### Finding the \( x \)-Intercepts: The \( x \)-intercepts are the points where the function equals zero. Set \( f(x) = 0 \) and solve for \( x \): \[ (x - 4)(x + 1)(x + 3) = 0 \] This equation is satisfied when any of the factors is zero: 1. \( x - 4 = 0 \)  → \( x = 4 \)  → \( (4, 0) \) 2. \( x + 1 = 0 \)  → \( x = -1 \)  → \( (-1, 0) \) 3. \( x + 3 = 0 \)  → \( x = -3 \)  → \( (-3, 0) \) So, the \( x \)-intercepts are: \[ (-3, 0),\ (-1, 0),\ \text{and}\ (4, 0) \] ### Finding the \( y \)-Intercept: The \( y \)-intercept is the value of the function when \( x = 0 \): \[ f(0) = (0 - 4)(0 + 1)(0 + 3) = (-4)(1)(3) = -12 \] So, the \( y \)-intercept is: \[ (0, -12) \] ### Selecting the Correct Answer: Comparing our results with the provided options, the correct choice is: **\( x \)-intercepts: \( (-3, 0),\ (-1, 0),\) and \( (4, 0) \) \(\cdot\) \( y \)-intercept: \( (0, -12) \)** **Answer:** \( x \)-intercepts: \( (-3,0),(-1,0) \), and \( (4,0) \cdot y \)-intercept: \( (0,-12) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the \( x \)-intercepts of the function \( f(x) = (x-4)(x+1)(x+3) \), we set \( f(x) = 0 \). This means we solve for when each factor equals zero: 1. \( x - 4 = 0 \) gives \( x = 4 \), 2. \( x + 1 = 0 \) gives \( x = -1 \), 3. \( x + 3 = 0 \) gives \( x = -3 \). So, the \( x \)-intercepts are \( (-3,0), (-1,0), (4,0) \). Next, to find the \( y \)-intercept, we evaluate \( f(0) \): \[ f(0) = (0-4)(0+1)(0+3) = (-4)(1)(3) = -12. \] Thus, the \( y \)-intercept is \( (0,-12) \). The correct answer is: \( x \)-intercepts: \( (-3,0),(-1,0), (4,0) \) and \( y \)-intercept: \( (0,-12) \). --- You just dived into intercepts! Did you know that the number of intercepts can signal the function's behavior? For polynomial functions like this one, the roots (or \( x \)-intercepts) reveal fundamental properties about the graph—such as where it crosses the x-axis. It's like a treasure map for graphing! Additionally, to plot this function more accurately, consider using a graphing calculator or an online graphing tool. It can help visualize where the function crosses the axes and what the overall shape looks like. This way, you can ensure you don’t miss other fascinating behaviors of the function between those intercepts!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad