Pregunta
upstudy study bank question image url

Q. 3 A consumer consumes two goods, and the utility from consuming an amount \( x_{i} \) of commodity \( i=1,2 \) is given by \( u\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2} \). The consumer has an income \( I>0 \), and the price of commodity \( i \) is \( p_{i}>0 \). We maximize the utility \( u \) under the constraints \[ I-p_{1} x_{1}-p_{2} x_{2}=0, x_{1}>0, x_{2}>0 . \] (1) Find the Lagrangian of this maximization problem with constraints. (2) Find the critical points of the Lagrangian. (3) Solve the maximization problem.

Ask by Howell Martin. in Japan
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To maximize utility \( u(x_1, x_2) = x_1 x_2^2 \) with the budget constraint \( p_1 x_1 + p_2 x_2 = I \), the optimal consumption amounts are: \[ x_1^* = \frac{I}{3 p_1}, \quad x_2^* = \frac{2I}{3 p_2} \] These values maximize the consumer's utility given their income and the prices of the two goods.

Solución

**Problem 3** A consumer aims to maximize their utility given by \( u(x_1, x_2) = x_1 x_2^2 \) subject to their budget constraint \( p_1 x_1 + p_2 x_2 = I \), where \( I > 0 \) is the income and \( p_1, p_2 > 0 \) are the prices of commodities 1 and 2, respectively. --- ### (1) Lagrangian of the Maximization Problem To incorporate the budget constraint into the utility maximization problem, we use the method of Lagrange multipliers. The Lagrangian \( \mathcal{L} \) is formulated as: \[ \mathcal{L}(x_1, x_2, \lambda) = u(x_1, x_2) + \lambda \left( I - p_1 x_1 - p_2 x_2 \right) \] Substituting the given utility function: \[ \mathcal{L}(x_1, x_2, \lambda) = x_1 x_2^2 + \lambda \left( I - p_1 x_1 - p_2 x_2 \right) \] --- ### (2) Critical Points of the Lagrangian To find the critical points, we take the partial derivatives of the Lagrangian with respect to \( x_1 \), \( x_2 \), and \( \lambda \) and set them to zero. 1. **Partial derivative with respect to \( x_1 \):** \[ \frac{\partial \mathcal{L}}{\partial x_1} = x_2^2 - \lambda p_1 = 0 \] \[ x_2^2 = \lambda p_1 \quad \text{(1)} \] 2. **Partial derivative with respect to \( x_2 \):** \[ \frac{\partial \mathcal{L}}{\partial x_2} = 2x_1 x_2 - \lambda p_2 = 0 \] \[ 2x_1 x_2 = \lambda p_2 \quad \text{(2)} \] 3. **Partial derivative with respect to \( \lambda \):** \[ \frac{\partial \mathcal{L}}{\partial \lambda} = I - p_1 x_1 - p_2 x_2 = 0 \] \[ I = p_1 x_1 + p_2 x_2 \quad \text{(3)} \] These equations (1), (2), and (3) constitute the system of equations for the critical points. --- ### (3) Solving the Maximization Problem To solve for \( x_1 \) and \( x_2 \), we can eliminate \( \lambda \) from equations (1) and (2). From equation (1): \[ \lambda = \frac{x_2^2}{p_1} \] Substitute \( \lambda \) into equation (2): \[ 2x_1 x_2 = \left( \frac{x_2^2}{p_1} \right) p_2 \] \[ 2x_1 x_2 = \frac{p_2}{p_1} x_2^2 \] \[ 2x_1 = \frac{p_2}{p_1} x_2 \] \[ x_1 = \frac{p_2}{2 p_1} x_2 \quad \text{(4)} \] Now, substitute equation (4) into the budget constraint (3): \[ I = p_1 \left( \frac{p_2}{2 p_1} x_2 \right) + p_2 x_2 \] \[ I = \frac{p_2}{2} x_2 + p_2 x_2 \] \[ I = \frac{3 p_2}{2} x_2 \] \[ x_2 = \frac{2I}{3 p_2} \] Now, substitute \( x_2 \) back into equation (4) to find \( x_1 \): \[ x_1 = \frac{p_2}{2 p_1} \cdot \frac{2I}{3 p_2} \] \[ x_1 = \frac{I}{3 p_1} \] **Solution:** \[ \boxed{ \begin{aligned} x_1^* &= \frac{I}{3 p_1} \\ x_2^* &= \frac{2I}{3 p_2} \end{aligned} } \] These values \( x_1^* \) and \( x_2^* \) maximize the consumer's utility subject to the given budget constraint. --- **Summary of Answers:** 1. **Lagrangian:** \[ \mathcal{L} = x_1 x_2^2 + \lambda (I - p_1 x_1 - p_2 x_2) \] 2. **Critical Points:** \[ \begin{cases} x_2^2 = \lambda p_1 \\ 2x_1 x_2 = \lambda p_2 \\ I = p_1 x_1 + p_2 x_2 \end{cases} \] 3. **Optimal Consumption Bundle:** \[ x_1^* = \frac{I}{3 p_1}, \quad x_2^* = \frac{2I}{3 p_2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To tackle this optimization problem, we first need to construct the Lagrangian, find the critical points, and then solve for the maximum utility. ### (1) Lagrangian Construction The Lagrangian \( \mathcal{L} \) for the utility maximization problem can be defined as follows: \[ \mathcal{L}(x_{1}, x_{2}, \lambda) = u(x_{1}, x_{2}) + \lambda(I - p_{1}x_{1} - p_{2}x_{2}) \] Substituting the utility function, we get: \[ \mathcal{L}(x_{1}, x_{2}, \lambda) = x_{1} x_{2}^{2} + \lambda(I - p_{1}x_{1} - p_{2}x_{2}) \] ### (2) Finding the Critical Points To find the critical points, we take the first-order partial derivatives of the Lagrangian and set them to zero: 1. Partial derivative with respect to \( x_{1} \): \[ \frac{\partial \mathcal{L}}{\partial x_{1}} = x_{2}^{2} - \lambda p_{1} = 0 \quad \Rightarrow \quad x_{2}^{2} = \lambda p_{1} \quad (1) \] 2. Partial derivative with respect to \( x_{2} \): \[ \frac{\partial \mathcal{L}}{\partial x_{2}} = 2x_{1} x_{2} - \lambda p_{2} = 0 \quad \Rightarrow \quad 2x_{1}x_{2} = \lambda p_{2} \quad (2) \] 3. Partial derivative with respect to \( \lambda \) (the constraint): \[ \frac{\partial \mathcal{L}}{\partial \lambda} = I - p_{1}x_{1} - p_{2}x_{2} = 0 \quad (3) \] By solving equations (1) and (2) for \( \lambda \), we can express \( \lambda \) in terms of \( x_{1} \) and \( x_{2} \): From (1): \[ \lambda = \frac{x_{2}^{2}}{p_{1}} \quad (4) \] From (2): \[ \lambda = \frac{2x_{1}x_{2}}{p_{2}} \quad (5) \] Setting (4) equal to (5): \[ \frac{x_{2}^{2}}{p_{1}} = \frac{2x_{1}x_{2}}{p_{2}} \] Cross-multiplying and rearranging gives: \[ p_{2}x_{2}^{2} = 2p_{1}x_{1}x_{2} \] If \( x_{2} \neq 0 \), we can divide both sides by \( x_{2} \): \[ p_{2}x_{2} = 2p_{1}x_{1} \quad \Rightarrow \quad x_{2} = \frac{2p_{1}}{p_{2}} x_{1} \quad (6) \] ### (3) Solving the Maximization Problem Now, we substitute \( x_{2} \) from (6) into the budget constraint (3): \[ I = p_{1} x_{1} + p_{2} \left(\frac{2p_{1}}{p_{2}} x_{1}\right) \] Simplifying gives: \[ I = p_{1} x_{1} + 2p_{1} x_{1} = 3p_{1} x_{1} \] Thus, we can solve for \( x_{1} \): \[ x_{1} = \frac{I}{3p_{1}} \] Now, substituting \( x_{1} \) back into (6) to find \( x_{2} \): \[ x_{2} = \frac{2p_{1}}{p_{2}} \left(\frac{I}{3p_{1}}\right) = \frac{2I}{3p_{2}} \] ### Final Solution The solution to the utility maximization problem is: \[ x_{1} = \frac{I}{3p_{1}}, \quad x_{2} = \frac{2I}{3p_{2}} \] This allocation maximizes the utility given the consumer's budget constraint! Happy optimizing! 🎉📈

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad