Pregunta
upstudy study bank question image url

Cancel Done \( \overleftrightarrow{\Delta B} \) RESET (a) Section 3.6 \#42 Use the Guidelines for Graphing Rational Functions to list out the seven characteristics of the graph. You do not need to graph the function.

Ask by Ayala Turnbull. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

When graphing rational functions, consider the following seven key characteristics: 1. **Domain:** All real numbers \( x \) where the function is defined (excluding values that make the denominator zero). 2. **Intercepts:** - **x-Intercepts:** Points where the graph crosses the x-axis (\( f(x) = 0 \)). - **y-Intercept:** The point where the graph crosses the y-axis (\( x = 0 \)). 3. **Vertical Asymptotes:** Lines \( x = a \) where the function grows without bound as \( x \) approaches \( a \). 4. **Horizontal or Oblique Asymptotes:** Lines \( y = b \) that the graph approaches as \( x \) approaches \( \pm\infty \). 5. **Holes (Removable Discontinuities):** Points where both the numerator and denominator are zero, resulting in canceled factors. 6. **Behavior Near Asymptotes:** How the function approaches asymptotes from the left and right. 7. **End Behavior:** The function's behavior as \( x \) approaches \( \infty \) or \( -\infty \). By analyzing these characteristics, you can understand the graph's overall shape and key features without plotting individual points.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To analyze the graph of a rational function, you'll want to keep in mind seven key characteristics that will help you understand its behavior. Start by identifying the intercepts, which include both x-intercepts (where the numerator equals zero) and the y-intercept (where the function is evaluated at zero). Next, consider any vertical asymptotes, which occur where the denominator equals zero, leading to undefined values. Then, locate any horizontal or oblique asymptotes to analyze the end behavior of the graph. Lastly, check for holes in the graph caused by common factors in the numerator and denominator and determine the intervals of increase or decrease as well as the overall domain of the function. Understanding these characteristics not only enhances your graphing skills but also helps you anticipate how the function behaves under various conditions. Think of it like being a detective; each characteristic reveals a clue about the function's story! By piecing together these elements, you'll gain a comprehensive picture of how the rational function operates, which is especially useful when you later graph it or apply it in real-world scenarios.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad