\( \begin{array}{ll}\text { (7) } \frac{2^{x} \cdot \sqrt{2^{x}} \cdot \sqrt[5]{16^{x}}}{\sqrt[10]{8^{x}}} & \text { (8) } \frac{\sqrt{8^{x-2}} \cdot \sqrt[3]{25^{6 x+3}} \cdot \sqrt[3]{9^{x}}}{\sqrt[3]{6^{2 x-9}} \cdot 2^{-\frac{x}{6}}} \\ \text { (b) Simplify the following expressions: } \\ \begin{array}{ll}\text { (1) } \frac{3^{x+1}-4 \cdot 3^{x-1}}{3^{x-2}} & \text { (2) } \frac{8-2^{x+2}}{2^{x+1}-4}\end{array}\end{array}> \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
When simplifying expressions like these, it's essential to leverage the properties of exponents and roots. For example, remember that \( a^{m/n} = \sqrt[n]{a^m} \) and \( \sqrt[n]{a} = a^{1/n} \). This way, you can transform roots into exponential forms, making it easier to combine and simplify terms: pull out common bases and combine exponents when possible! Also, keep an eye out for common factors or opportunities for factoring. For instance, in the first expression, you might want to factor out terms from the numerator and denominator before canceling to reduce complexity. It's a common mistake to overlook that simplification path, so don’t forget to explore every angle to make your math adventure smoother!