Pregunta
upstudy study bank question image url

\[ \text { QUESTION } 2 \] Write the repeating decimal number \( 2.7 \mathbf{1} \delta \) as an improper fraction Write the repeating decimal number \( 10, \overline{213} \) as an improper fraction

Ask by Reed George. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The repeating decimal \( 2.7\overline{1} \) is equal to the improper fraction \( \frac{122}{45} \), and the repeating decimal \( 10.\overline{213} \) is equal to the improper fraction \( \frac{3401}{333} \).

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(x=10+0.\overline{213}\) - step1: Simplify: \(x=\frac{3401}{333}\) Solve the equation \( x=2.7+0.0\overline{1} \). Solve the equation by following steps: - step0: Solve for \(x\): \(x=2.7+0\overline{1}\) - step1: Simplify: \(x=\frac{122}{45}\) Let's convert the repeating decimal numbers into improper fractions step by step. ### 1. Converting \( 2.7\overline{1} \) to an improper fraction Let \( x = 2.7\overline{1} \). To express this as a fraction, we can separate the non-repeating and repeating parts: 1. **Separate the decimal**: \[ x = 2.7 + 0.0\overline{1} \] 2. **Convert \( 2.7 \) to a fraction**: \[ 2.7 = \frac{27}{10} \] 3. **Convert \( 0.0\overline{1} \)**: Let \( y = 0.0\overline{1} \). \[ 10y = 0.1\overline{1} \] Subtracting the original equation from this: \[ 10y - y = 0.1\overline{1} - 0.0\overline{1} \implies 9y = 0.1 \implies y = \frac{1}{90} \] 4. **Combine the fractions**: \[ x = \frac{27}{10} + \frac{1}{90} \] To add these fractions, find a common denominator (which is 90): \[ x = \frac{27 \times 9}{90} + \frac{1}{90} = \frac{243 + 1}{90} = \frac{244}{90} \] Simplifying gives: \[ x = \frac{122}{45} \] ### 2. Converting \( 10.\overline{213} \) to an improper fraction Let \( x = 10.\overline{213} \). 1. **Separate the decimal**: \[ x = 10 + 0.\overline{213} \] 2. **Convert \( 0.\overline{213} \)**: Let \( y = 0.\overline{213} \). \[ 1000y = 213.\overline{213} \] Subtracting the original equation from this: \[ 1000y - y = 213.\overline{213} - 0.\overline{213} \implies 999y = 213 \implies y = \frac{213}{999} \] Simplifying gives: \[ y = \frac{71}{333} \] 3. **Combine the fractions**: \[ x = 10 + \frac{71}{333} = \frac{10 \times 333 + 71}{333} = \frac{3330 + 71}{333} = \frac{3401}{333} \] ### Final Results - The improper fraction for \( 2.7\overline{1} \) is \( \frac{122}{45} \). - The improper fraction for \( 10.\overline{213} \) is \( \frac{3401}{333} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To convert the repeating decimal \( 2.7\overline{1} \) into an improper fraction, we can express it as \( 2.7 + 0.0\overline{1} \). The repeating part \( 0.0\overline{1} \) can be approached by letting \( x = 0.0\overline{1} \). Multiplying by 10 gives us \( 10x = 0.\overline{1} \), and then multiplying by 10 again results in \( 100x = 1.\overline{1} \). Subtracting these gives \( 99x = 1 \), thus \( x = \frac{1}{99} \). Therefore, \( 2.7\overline{1} = 2.7 + \frac{1}{99} = \frac{27}{10} + \frac{1}{99} \). To add these fractions, we find a common denominator of 990, yielding \( \frac{27 \cdot 99}{990} + \frac{10}{990} = \frac{2673 + 10}{990} = \frac{2683}{990} \). For the decimal \( 10.\overline{213} \), we can similarly let \( y = 10.\overline{213} \). By multiplying through by 1000, we have \( 1000y = 10213.\overline{213} \), allowing us to subtract to isolate the repeating part: \( 1000y - y = 10213.\overline{213} - 10.\overline{213} \) yielding \( 999y = 10203 \). Therefore, \( y = \frac{10203}{999} \). After simplifying by dividing both the numerator and the denominator by 3, we obtain \( y = \frac{3401}{333} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad