\[ \text { QUESTION } 2 \] Write the repeating decimal number \( 2.7 \mathbf{1} \delta \) as an improper fraction Write the repeating decimal number \( 10, \overline{213} \) as an improper fraction
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To convert the repeating decimal \( 2.7\overline{1} \) into an improper fraction, we can express it as \( 2.7 + 0.0\overline{1} \). The repeating part \( 0.0\overline{1} \) can be approached by letting \( x = 0.0\overline{1} \). Multiplying by 10 gives us \( 10x = 0.\overline{1} \), and then multiplying by 10 again results in \( 100x = 1.\overline{1} \). Subtracting these gives \( 99x = 1 \), thus \( x = \frac{1}{99} \). Therefore, \( 2.7\overline{1} = 2.7 + \frac{1}{99} = \frac{27}{10} + \frac{1}{99} \). To add these fractions, we find a common denominator of 990, yielding \( \frac{27 \cdot 99}{990} + \frac{10}{990} = \frac{2673 + 10}{990} = \frac{2683}{990} \). For the decimal \( 10.\overline{213} \), we can similarly let \( y = 10.\overline{213} \). By multiplying through by 1000, we have \( 1000y = 10213.\overline{213} \), allowing us to subtract to isolate the repeating part: \( 1000y - y = 10213.\overline{213} - 10.\overline{213} \) yielding \( 999y = 10203 \). Therefore, \( y = \frac{10203}{999} \). After simplifying by dividing both the numerator and the denominator by 3, we obtain \( y = \frac{3401}{333} \).