Pregunta
Solve the given equation for \( x \) \( e^{2 x+4}-e=0 \) \( x=\square \) (Simplify your answer. Type a fraction or an integer. Use a comma to separate answers as needed.)
Ask by Stuart Howell. in the United States
Jan 21,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = -\frac{3}{2} \)
Solución
To solve the equation \( e^{2x + 4} - e = 0 \):
1. Start by isolating the exponential term:
\[
e^{2x + 4} = e
\]
2. Recognize that \( e^k = e^1 \) implies \( k = 1 \) because the exponential function is one-to-one:
\[
2x + 4 = 1
\]
3. Solve for \( x \):
\[
2x = 1 - 4 \\
2x = -3 \\
x = -\frac{3}{2}
\]
**Answer:**
\(-\frac{3}{2}\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To solve the equation \( e^{2x+4} - e = 0 \), we can start by isolating the exponential term. 1. Rewrite the equation: \( e^{2x+4} = e \) 2. Take the natural logarithm of both sides: \( 2x + 4 = 1 \) 3. Now, solve for \( x \): \( 2x = 1 - 4 \) \( 2x = -3 \) \( x = -\frac{3}{2} \) So, the solution is \( x = -\frac{3}{2} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium