Calculate the product of \( 8 / 15,6 / 5 \), and \( 1 / 3 \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the product of \( \frac{8}{15} \), \( \frac{6}{5} \), and \( \frac{1}{3} \), we multiply the numerators together and the denominators together. First, multiply the numerators: \[ 8 \times 6 \times 1 = 48 \] Next, multiply the denominators: \[ 15 \times 5 \times 3 = 225 \] Now, we can combine these results to form the fraction: \[ \frac{48}{225} \] To simplify, we need to find the greatest common divisor (GCD) of 48 and 225. The factors are: - The factors of 48 are \( 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 \). - The factors of 225 are \( 1, 3, 5, 9, 15, 25, 45, 75, 225 \). The largest common factor is 3. Now we simplify the fraction: \[ \frac{48 \div 3}{225 \div 3} = \frac{16}{75} \] So, the product of \( \frac{8}{15} \), \( \frac{6}{5} \), and \( \frac{1}{3} \) is \[ \frac{16}{75}. \]