Responder
\( \sin(2\theta) = \frac{12}{13} \), \( \cos(2\theta) = -\frac{5}{13} \), \( \tan(2\theta) = -\frac{12}{5} \).
Solución
Certainly! Let's work through the problem step by step using the double angle formulas.
### **Given:**
- \( \tan \theta = \frac{3}{2} \)
- \( \cos \theta < 0 \)
### **1. Determining the Quadrant for \( \theta \)**
- **Understanding the Signs:**
- \( \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{3}{2} \) implies that both sine and cosine have the same sign since tangent is positive.
- \( \cos \theta < 0 \) indicates that cosine is negative.
- **Quadrant Analysis:**
- **Quadrant I:** All trigonometric functions are positive. (Not suitable since \( \cos \theta < 0 \))
- **Quadrant II:** Sine is positive, cosine is negative. (Tangent is negative here.)
- **Quadrant III:** Both sine and cosine are negative, making tangent positive. (This fits both conditions.)
- **Quadrant IV:** Sine is negative, cosine is positive. (Tangent is negative here.)
- **Conclusion:** \( \theta \) is in **Quadrant III**.
- **Sketch of \( \theta \) in Quadrant III:**
Imagine the Cartesian plane divided into four quadrants. Quadrant III is the lower-left quadrant where both \( x \) (cosine) and \( y \) (sine) coordinates are negative. Here's a rough sketch:
```
|
|
II | I
|
-------------------
|
III | IV
|
```
\( \theta \) lies in the lower-left quadrant (Quadrant III).
### **2. Calculating \( \sin(2\theta) \), \( \cos(2\theta) \), and \( \tan(2\theta) \)**
**First, determine \( \sin \theta \) and \( \cos \theta \):**
Given \( \tan \theta = \frac{3}{2} \), we can consider a right triangle where:
- Opposite side = 3
- Adjacent side = 2
- Hypotenuse = \( \sqrt{3^2 + 2^2} = \sqrt{13} \)
However, since \( \theta \) is in Quadrant III, both \( \sin \theta \) and \( \cos \theta \) are negative.
- \( \sin \theta = -\frac{3}{\sqrt{13}} \)
- \( \cos \theta = -\frac{2}{\sqrt{13}} \)
**Now, apply the Double Angle Formulas:**
1. **\( \sin(2\theta) \):**
\[
\sin(2\theta) = 2 \sin \theta \cos \theta
\]
Substitute the values:
\[
\sin(2\theta) = 2 \left(-\frac{3}{\sqrt{13}}\right) \left(-\frac{2}{\sqrt{13}}\right) = 2 \left(\frac{6}{13}\right) = \frac{12}{13}
\]
2. **\( \cos(2\theta) \):**
\[
\cos(2\theta) = \cos^2 \theta - \sin^2 \theta
\]
Substitute the values:
\[
\cos(2\theta) = \left(-\frac{2}{\sqrt{13}}\right)^2 - \left(-\frac{3}{\sqrt{13}}\right)^2 = \frac{4}{13} - \frac{9}{13} = -\frac{5}{13}
\]
3. **\( \tan(2\theta) \):**
\[
\tan(2\theta) = \frac{2 \tan \theta}{1 - \tan^2 \theta}
\]
Substitute \( \tan \theta = \frac{3}{2} \):
\[
\tan(2\theta) = \frac{2 \times \frac{3}{2}}{1 - \left(\frac{3}{2}\right)^2} = \frac{3}{1 - \frac{9}{4}} = \frac{3}{-\frac{5}{4}} = -\frac{12}{5}
\]
### **Final Results:**
- \( \sin(2\theta) = \frac{12}{13} \)
- \( \cos(2\theta) = -\frac{5}{13} \)
- \( \tan(2\theta) = -\frac{12}{5} \)
### **Summary:**
| Function | Value |
|----------------|--------------|
| \( \sin(2\theta) \) | \( \frac{12}{13} \) |
| \( \cos(2\theta) \) | \( -\frac{5}{13} \) |
| \( \tan(2\theta) \) | \( -\frac{12}{5} \) |
These results are derived using the double angle formulas tailored to the given values and the quadrant in which \( \theta \) lies.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución