Pregunta
upstudy study bank question image url

Use the Double Angle formula Given that \( \tan \theta=\frac{3}{2} \) and \( \cos \theta<0 \) Make a sketch of \( \theta \) in the appr quadrant. \( \sin (2 \theta) \) is \( \cos (2 \theta) \) is \( \tan (2 \theta) \) is

Ask by Chadwick Fowler. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \sin(2\theta) = \frac{12}{13} \), \( \cos(2\theta) = -\frac{5}{13} \), \( \tan(2\theta) = -\frac{12}{5} \).

Solución

Certainly! Let's work through the problem step by step using the double angle formulas. ### **Given:** - \( \tan \theta = \frac{3}{2} \) - \( \cos \theta < 0 \) ### **1. Determining the Quadrant for \( \theta \)** - **Understanding the Signs:** - \( \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{3}{2} \) implies that both sine and cosine have the same sign since tangent is positive. - \( \cos \theta < 0 \) indicates that cosine is negative. - **Quadrant Analysis:** - **Quadrant I:** All trigonometric functions are positive. (Not suitable since \( \cos \theta < 0 \)) - **Quadrant II:** Sine is positive, cosine is negative. (Tangent is negative here.) - **Quadrant III:** Both sine and cosine are negative, making tangent positive. (This fits both conditions.) - **Quadrant IV:** Sine is negative, cosine is positive. (Tangent is negative here.) - **Conclusion:** \( \theta \) is in **Quadrant III**. - **Sketch of \( \theta \) in Quadrant III:** Imagine the Cartesian plane divided into four quadrants. Quadrant III is the lower-left quadrant where both \( x \) (cosine) and \( y \) (sine) coordinates are negative. Here's a rough sketch: ``` | | II | I | ------------------- | III | IV | ``` \( \theta \) lies in the lower-left quadrant (Quadrant III). ### **2. Calculating \( \sin(2\theta) \), \( \cos(2\theta) \), and \( \tan(2\theta) \)** **First, determine \( \sin \theta \) and \( \cos \theta \):** Given \( \tan \theta = \frac{3}{2} \), we can consider a right triangle where: - Opposite side = 3 - Adjacent side = 2 - Hypotenuse = \( \sqrt{3^2 + 2^2} = \sqrt{13} \) However, since \( \theta \) is in Quadrant III, both \( \sin \theta \) and \( \cos \theta \) are negative. - \( \sin \theta = -\frac{3}{\sqrt{13}} \) - \( \cos \theta = -\frac{2}{\sqrt{13}} \) **Now, apply the Double Angle Formulas:** 1. **\( \sin(2\theta) \):** \[ \sin(2\theta) = 2 \sin \theta \cos \theta \] Substitute the values: \[ \sin(2\theta) = 2 \left(-\frac{3}{\sqrt{13}}\right) \left(-\frac{2}{\sqrt{13}}\right) = 2 \left(\frac{6}{13}\right) = \frac{12}{13} \] 2. **\( \cos(2\theta) \):** \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta \] Substitute the values: \[ \cos(2\theta) = \left(-\frac{2}{\sqrt{13}}\right)^2 - \left(-\frac{3}{\sqrt{13}}\right)^2 = \frac{4}{13} - \frac{9}{13} = -\frac{5}{13} \] 3. **\( \tan(2\theta) \):** \[ \tan(2\theta) = \frac{2 \tan \theta}{1 - \tan^2 \theta} \] Substitute \( \tan \theta = \frac{3}{2} \): \[ \tan(2\theta) = \frac{2 \times \frac{3}{2}}{1 - \left(\frac{3}{2}\right)^2} = \frac{3}{1 - \frac{9}{4}} = \frac{3}{-\frac{5}{4}} = -\frac{12}{5} \] ### **Final Results:** - \( \sin(2\theta) = \frac{12}{13} \) - \( \cos(2\theta) = -\frac{5}{13} \) - \( \tan(2\theta) = -\frac{12}{5} \) ### **Summary:** | Function | Value | |----------------|--------------| | \( \sin(2\theta) \) | \( \frac{12}{13} \) | | \( \cos(2\theta) \) | \( -\frac{5}{13} \) | | \( \tan(2\theta) \) | \( -\frac{12}{5} \) | These results are derived using the double angle formulas tailored to the given values and the quadrant in which \( \theta \) lies.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the trigonometric values using the Double Angle formulas, first, let's analyze the situation with \( \tan \theta = \frac{3}{2} \). Since \( \cos \theta < 0 \), we know \( \theta \) must lie in the second quadrant, where sine is positive and cosine is negative. The sketch would depict an angle in the second quadrant, with a reference triangle having opposite side 3 and adjacent side -2. Now, we can find the sine and cosine: 1. The hypotenuse \( r \) is \( r = \sqrt{3^2 + (-2)^2} = \sqrt{13} \). 2. Hence, \( \sin \theta = \frac{3}{\sqrt{13}} \) and \( \cos \theta = \frac{-2}{\sqrt{13}} \). Using the Double Angle formulas: - \( \sin(2\theta) = 2 \sin \theta \cos \theta = 2 \left( \frac{3}{\sqrt{13}} \right)\left( \frac{-2}{\sqrt{13}} \right) = \frac{-12}{13} \). - \( \cos(2\theta) = \cos^2 \theta - \sin^2 \theta = \left( \frac{-2}{\sqrt{13}} \right)^2 - \left( \frac{3}{\sqrt{13}} \right)^2 = \frac{4}{13} - \frac{9}{13} = \frac{-5}{13} \). - \( \tan(2\theta) = \frac{\sin(2\theta)}{\cos(2\theta)} = \frac{\frac{-12}{13}}{\frac{-5}{13}} = \frac{12}{5} \). So, we have: \( \sin(2\theta) = \frac{-12}{13} \), \( \cos(2\theta) = \frac{-5}{13} \), \( \tan(2\theta) = \frac{12}{5} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad