Pregunta

\( y=\sinh (x) \)

Ask by Chan Hall. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( y = \sinh(x) \) is the hyperbolic sine function, defined as \( \sinh(x) = \frac{e^x - e^{-x}}{2} \). It is an odd function with a domain and range of all real numbers. Its derivative is \( \cosh(x) \) and its integral is \( \cosh(x) + C \). The graph of \( y = \sinh(x) \) is an S-shaped curve that passes through the origin and extends infinitely in both directions.

Solución

The function given is \( y = \sinh(x) \), which is the hyperbolic sine function. ### Properties of the Hyperbolic Sine Function 1. **Definition**: The hyperbolic sine function is defined as: \[ \sinh(x) = \frac{e^x - e^{-x}}{2} \] 2. **Domain**: The domain of \( \sinh(x) \) is all real numbers, \( (-\infty, \infty) \). 3. **Range**: The range of \( \sinh(x) \) is also all real numbers, \( (-\infty, \infty) \). 4. **Symmetry**: The function is odd, meaning \( \sinh(-x) = -\sinh(x) \). 5. **Derivative**: The derivative of \( \sinh(x) \) is: \[ \frac{dy}{dx} = \cosh(x) \] where \( \cosh(x) \) is the hyperbolic cosine function. 6. **Integral**: The integral of \( \sinh(x) \) is: \[ \int \sinh(x) \, dx = \cosh(x) + C \] where \( C \) is the constant of integration. ### Graph of the Function The graph of \( y = \sinh(x) \) resembles the shape of the standard sine wave but is unbounded and extends infinitely in both directions. It passes through the origin (0,0) and has a characteristic "S" shape. If you need further analysis or specific calculations related to this function, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that the hyperbolic sine function, \( \sinh(x) \), is closely related to the exponential function? It can be expressed as: \( \sinh(x) = \frac{e^x - e^{-x}}{2} \). This function is essential in various fields, including engineering and physics, particularly when dealing with problems involving hyperbolic geometry and waves. In the realm of real-world applications, you might find \( \sinh(x) \) popping up in architecture and construction, especially in the design of arches and structures that mimic natural forms. The catenary curve, which describes the shape of a hanging chain or cable, is actually modeled using the hyperbolic cosine function, but its properties also heavily involve \( \sinh(x) \) in calculations!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad