Pregunta
upstudy study bank question image url

The first three terms of a geometric sequence are: \( 16 ; 4 ; 1 ; \ldots \) 1.2 Calculate the value of the \( 12^{\text {th }} \) term (Leave your answe simplified exponential form) 1.2 Calculate the sum of the first 10 terms of the sequence 2. Given the geometric sequence: \( 27 ; 9 ; 3 ; \ldots \) 2.1 Determine the formula for the nth term of the sequence 2.2 Why does the sum to infinity of this sequence exist? 1.3 Determine \( S_{\infty} \)

Ask by Ford Hanson. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. The 12th term is \( \frac{1}{2^{18}} \). 2. The sum of the first 10 terms is \( \frac{64}{3} \times \left(1 - \frac{1}{2^{20}}\right) \). 3. The nth term formula is \( 27 \times \left(\frac{1}{3}\right)^{n-1} \). 4. The sum to infinity \( S_{\infty} \) is \( \frac{81}{2} \).

Solución

Let's solve the problems step by step. ### Problem 1: Geometric Sequence \( 16, 4, 1, \ldots \) #### 1.1 Calculate the value of the \( 12^{\text{th}} \) term In a geometric sequence, each term can be expressed as: \[ a_n = a_1 \cdot r^{n-1} \] where \( a_1 \) is the first term, \( r \) is the common ratio, and \( n \) is the term number. 1. **Identify the first term and common ratio:** - First term \( a_1 = 16 \) - Second term \( a_2 = 4 \) - Common ratio \( r = \frac{a_2}{a_1} = \frac{4}{16} = \frac{1}{4} \) 2. **Calculate the \( 12^{\text{th}} \) term:** \[ a_{12} = 16 \cdot \left(\frac{1}{4}\right)^{12-1} = 16 \cdot \left(\frac{1}{4}\right)^{11} \] Now, let's simplify this expression: \[ a_{12} = 16 \cdot \frac{1}{4^{11}} = 16 \cdot \frac{1}{(2^2)^{11}} = 16 \cdot \frac{1}{2^{22}} = \frac{16}{2^{22}} = \frac{2^4}{2^{22}} = \frac{1}{2^{18}} \] Thus, the \( 12^{\text{th}} \) term is: \[ a_{12} = \frac{1}{2^{18}} \] #### 1.2 Calculate the sum of the first 10 terms of the sequence The sum of the first \( n \) terms of a geometric sequence is given by: \[ S_n = a_1 \cdot \frac{1 - r^n}{1 - r} \] For the first 10 terms: - \( n = 10 \) - \( a_1 = 16 \) - \( r = \frac{1}{4} \) Now, substituting these values into the formula: \[ S_{10} = 16 \cdot \frac{1 - \left(\frac{1}{4}\right)^{10}}{1 - \frac{1}{4}} = 16 \cdot \frac{1 - \frac{1}{4^{10}}}{\frac{3}{4}} = 16 \cdot \frac{4}{3} \cdot \left(1 - \frac{1}{4^{10}}\right) \] Calculating \( 4^{10} \): \[ 4^{10} = (2^2)^{10} = 2^{20} \] Thus: \[ S_{10} = \frac{64}{3} \cdot \left(1 - \frac{1}{2^{20}}\right) \] ### Problem 2: Geometric Sequence \( 27, 9, 3, \ldots \) #### 2.1 Determine the formula for the \( n^{\text{th}} \) term of the sequence 1. **Identify the first term and common ratio:** - First term \( a_1 = 27 \) - Common ratio \( r = \frac{9}{27} = \frac{1}{3} \) 2. **Write the formula for the \( n^{\text{th}} \) term:** \[ a_n = 27 \cdot \left(\frac{1}{3}\right)^{n-1} \] #### 2.2 Why does the sum to infinity of this sequence exist? The sum to infinity of a geometric series exists if the absolute value of the common ratio \( r \) is less than 1: \[ |r| < 1 \] In this case, \( r = \frac{1}{3} \), which satisfies this condition. #### 1.3 Determine \( S_{\infty} \) The sum to infinity \( S_{\infty} \) of a geometric series is given by: \[ S_{\infty} = \frac{a_1}{1 - r} \] Substituting the values: \[ S_{\infty} = \frac{27}{1 - \frac{1}{3}} = \frac{27}{\frac{2}{3}} = 27 \cdot \frac{3}{2} = \frac{81}{2} \] ### Summary of Results 1. The \( 12^{\text{th}} \) term of the first sequence is \( \frac{1}{2^{18}} \). 2. The sum of the first 10 terms of the first sequence is \( \frac{64}{3} \cdot \left(1 - \frac{1}{2^{20}}\right) \). 3. The formula for the \( n^{\text{th}} \) term of the second sequence is \( 27 \cdot \left(\frac{1}{3}\right)^{n-1} \). 4. The sum to infinity \( S_{\infty} \) of the second sequence is \( \frac{81}{2} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The given geometric sequence starts with \( 16, 4, 1 \), where the common ratio \( r \) can be found by dividing the second term by the first term (\( \frac{4}{16} = \frac{1}{4} \)). The formula for the \( n^{th} \) term is \( a_n = 16 \cdot \left( \frac{1}{4} \right)^{n-1} \). To find the \( 12^{th} \) term, we can use \( a_{12} = 16 \cdot \left( \frac{1}{4} \right)^{11} = 16 \cdot \frac{1}{4^{11}} = \frac{16}{4^{11}} = \frac{16}{2^{22}} = \frac{1}{2^{18}} \). In geometric sequences, the sum of the first \( n \) terms can be calculated using the formula \( S_n = a \frac{1 - r^n}{1 - r} \), where \( a \) is the first term and \( r \) is the common ratio. Here, for the first 10 terms \( S_{10} = 16 \frac{1 - \left( \frac{1}{4} \right)^{10}}{1 - \frac{1}{4}} = 16 \frac{1 - \frac{1}{4^{10}}}{\frac{3}{4}} = \frac{64}{3} \left( 1 - \frac{1}{4^{10}} \right) \). For the second geometric sequence \( 27, 9, 3 \), the common ratio is \( \frac{9}{27} = \frac{1}{3} \). The \( n^{th} \) term can be determined with the formula \( a_n = 27 \cdot \left( \frac{1}{3} \right)^{n-1} \). As the absolute value of the common ratio \( |r| < 1 \), the sum to infinity exists, and we can use the formula \( S_{\infty} = \frac{a}{1 - r} = \frac{27}{1 - \frac{1}{3}} = 27 \cdot \frac{3}{2} = 40.5 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad